

VALU-BEAM[®] 912 Series

more sensors, more solutions

AC- and DC-powered sensors with solid-state outputs

Features

- · Choose models for 10 to 30V dc or 24 to 250V ac operation.
- DC models have bipolar solid-state outputs: one NPN (sinking) and one PNP (sourcing).
- AC models have an SPST solid-state output rated for up to 3/4 amp with simple 2-wire hookup.
- All models have a rear panel sensitivity adjustment and light/dark operate switch.
- DC models include Banner's Alignment Indicating Device (AID™) system.
- Choose models with integral 2 m (6.5') cable or Mini-style QD (quick-disconnect) connector; 9 m (30') cables are also available.

* 9 m cables are available by adding suffix "W/30" to the model number of any cabled sensor (e.g., SMA91E W/30). A model with a QD connector requires a mating cable; see page 7.

WARNING . . . Not To Be Used for Personnel Protection

Never use these products as sensing devices for personnel protection. Doing so could lead to serious injury or death.

These sensors do NOT include the self-checking redundant circuitry necessary to allow their use in personnel safety applications. A sensor failure or malfunction can cause either an energized or de-energized sensor output condition. Consult your current Banner Safety Products catalog for safety products which meet OSHA, ANSI and IEC standards for personnel protection.

I.

Supply Output Models Range[†] Cable* **Excess Gain Beam Pattern** Voltage Type Non-Polarized 1000 SM912LV, SM2A912LV **####** E X C E SM912LV, SM2A912LV 150 mm 6.0' SM912LV 2 m (6.5') Bipolar 100 100 mm 4.0" 10-30V dc NPN/PNP SM912LVQD 4-Pin Mini QD 0.15 S S 50 mm 2.0" With BRT-0 C to 9 m G A I N 10 2.0" 50 mm (6" to 100 mm 4.0" WH5 PDT-2 SPST SCR 30') 150 mm 6.0" SM2A912LV 2 m (6.5') 24-250V ac Solid-state SM2A912LVQD 3-Pin Mini QD 6 m 20' 2 m 6.6' 4 m 13' 8 m 26' 10 m 33' 0.01 m 0.033' 0.10 m 0.33' 1.0 m 3.3' 10 п 33' 2-Wire DISTANCE DISTANCE Polarized^{††} 1000 SM912LVAG, SM2A912LVAG E X C E S S SM2A912LVAG SM912LVAG. SM2A912LVAG Retroreflective Mode 75 mm 3.0" SM912LVAG 2 m (6.5') Bipolar 100 10-30V dc 50 mn 2.0" SM912LVAGQD 4-Pin Mini QD NPN/PNP 0.3 to 25 mm 1.0" 0 4.5 m 25 mm G 1.0" 10 With RF (1' to 50 mm 2.0" SPST SCR I N 3.0" 15') SM2A912LVAG 75 mm 2 m (6.5') 24-250V ac Solid-state SM2A912LVAGQD 3-Pin Mini QD 1 m 3.3' 2 m 6.6' 3 m 10' 4 m 13' 5 m 16' 0.01 m 0.033' 0.10 m 0.33' 1.0 п 3.3' 10 п 33' 2-Wire DISTANCE DISTANCE

Retroreflective Mode Models

[†]Retroreflective range is specified using one model BRT-3 retroreflector (3" diameter). Actual sensing range may be more or less than specified, depending upon the efficiency and reflective area of the retroreflector used.

⁺⁺Use polarized models when shiny objects will be sensed.

						Infrared. 880 nm
	Diffuse Mode Models					
Models	Range [†]	Cable*	Supply Voltage	Output Type	Excess Gain Performance based on 90	Beam Pattern % reflectance white test card
SM912D SM912DQD	760 mm	2 m (6.5') 4-Pin Mini QD	10-30V dc	Bipolar NPN/PNP	1000 E SM912D, X D Iffuse Mode E 100 S S	18 mm 12 mm 6 mm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SM2A912D SM2A912DQD	(30")	2 m (6.5') 3-Pin Mini QD	24-250V ac	SPST SCR Solid-state 2-Wire	G 10 A I N 1 1mm 10 mm 100 mm 1000 mm 0.4" 4" 40" DISTANCE	6 mm 12 mm 18 mm 0 150 mm 300 mm 450 mm 600 mm 750 mm 6" 12" 18" 24" 30" DISTANCE
SM912DSR SM912DSRQD	280 mm	2 m (6.5') 4-Pin Mini QD	10-30V dc	Bipolar NPN/PNP	1000 E X C E 100 E 100 S	18 mm 18 mm 12 mm 6 mm SM912DSR, SM2A912DSR Diffuse Mode 0.55° 0.25°
SM2A912DSR SM2A912DSRQD	(15")	2 m (6.5') 3-Pin Mini QD	24-250V ac	SPST SCR Solid-state 2-Wire	G 10 A 1 N 1, 0.04" 100 mm 100 mm 0.4" 40" DISTANCE	0 6 mm 12 mm 18 mm 0 75 mm 150 mm 225 mm 300 mm 375 mm 3" 6" 9" 12" 15" DISTANCE

Visible Red or Infrared; see below

Models	Range	Cable*	Supply Voltage	Output Type	Excess Gain Performance based on 90	Beam Pattern % reflectance white test card
Visible Red 650 nm				1000		
SM912CV SM912CVQD	38 mm (1.5") Spot	2 m (6.5') 4-Pin Mini QD	10-30V dc	Bipolar NPN/PNP	E 100 - Convergent Mode S G 10 - A	2.4 mm SM912CV, SM2A912CV 0.09" 1.6 mm 0.8 mm 0.03" 0.8 mm 0.03"
SM2A912CV SM2A912CVQD	Size at Focus: 1.5 mm (0.06")	2 m (6.5') 3-Pin Mini QD	24-250V ac	SPST SCR Solid-state 2-Wire	A I N 1 1 1 1 1 1 1 1 1 1 1 1 1	1.6 mm 2.4 mm 0 12.5 mm 25 mm 37.5 mm 50 mm 62.5 mm 0.5" 1.0" 1.5" 2.0" 2.5" DISTANCE
Infrared 880 nm			1000			
SM912C SM912CQD	38 mm	2 m (6.5') 4-Pin Mini QD	10-30V dc	Bipolar NPN/PNP	E 100 - Convergent Mode S S G 10 - Convergent Mode	2.4 mm 1.6 mm 0.8 mm 0.8 mm 0.8 mm 0.8 mm 0.8 mm 0.8 mm 0.09° 0
SM2A912C SM2A912CQD	(1.5")	2 m (6.5') 3-Pin Mini QD	24-250V ac	SPST SCR Solid-state 2-Wire	A I N 1 1 1 1 1 1 1 1 1 1 1 1 1	1.6 mm 2.4 mm 0 15 mm 30 mm 45 mm 60 mm 75 mm 0.6" 1.2" 1.8" 2.4" 3.0" DISTANCE

Convergent Mode Models

Use where the separation between emitting and receiving fibers is more than a few feet, or where it is inconvenient to run both fibers from a single sensor. Watertight o-ringsealed sensor/fiber interface.

Glass Fiber Optic Individual Emitter or Receiver Models

Models	Range	Cable*	Supply Voltage	Output Type	Excess Gain	Beam Pattern
SMA91EF SMA91EFQD	Bange	2 m (6.5') 3-Pin Mini QD	10-250V ac/dc	_	1000 E X SMA91EF & SM91RF, X C E 100 Dppsed Mole	SMA91EF & SM91RF, 300 mm 200 mm 200 mm 8' 8' 8'
SM91RF SM91RFQD	varies with fiber	2 m (6.5') 4-Pin Mini QD	10-30V dc	Bipolar NPN/PNP	S G 10 A U	100 mm 0 With 19 lesses 0 100 mm 200 mm 200 mm
SM2A91RF SM2A91RFQD	used	2 m (6.5') 3-Pin Mini QD	24-250V ac	SPST SCR Solid-state 2-Wire	N 1 1225 Herses	0 2.4 m 4.8 m 7.2 m 9.6 m 12 m 8' 16' 24' 32' 40' DISTANCE

*9 m (30') cables are available by adding suffix "**W/30**" to the model number of any cabled sensor (e.g., **SMA91EF W/30**). A model with a QD connector requires a mating cable; see page 7.

Watertight o-ring-sealed sensor/fiber interface.

Infrared, 880 nm

P						
Models	Bange	Cable*	Supply	Output	Excess Gain	Beam Pattern
	nungo	Cubic	Voltage	Туре	Performance based on 90	% reflectance white test card
SM912F SM912FQD	Range varies with sensing	2 m (6.5') 4-Pin Mini QD	10-30V dc	Bipolar NPN/PNP	1000 E X C 100 Diposed Mode TT35 Fibers G 10 1 mm 10 mm 10 mm 10 mm 100 m	75 mm 10 mm 15 mm 16 mm 17 mm 16 mm 17 mm 16 mm 17 mm 16 mm 16 mm 17 mm 16 mm 17 mm 16 mm 17
SM2A912F SM2A912FQD	mode and fiber optics used.	2 m (6.5') 3-Pin Mini QD	24-250V ac	SPST SCR Solid-state 2-Wire	1000 E X C E 100 B 100 B 100 B 100 B 100 B 100 B 100 B 100 B 100 B 100 B 100 B 100 B 100 B 100 B 100 B 100 B 12F SM2A12F D Iffuse Mode B 100 B 10 B 1 B 1	1.9 mm 1.3 mm 0.7 mm 0.7 mm 1.3 mm 0.7 mm 1.3 mm 0.7 mm 0.7 mm 1.3 mm 0.7 mm 0.7 mm 1.3 mm 0.05° 0.5° 0

Glass Fiber Optic Models

* 9 m (30') cables are available by adding suffix "W/30" to the model number of any cabled sensor (e.g., SM912F W/30). A model with a QD connector requires a mating cable; see page 7.

4 P/N 03467 rev. E

	Specifications – DC Models
Supply Voltage and Current	10 to 30V dc at 20 mA maximum, exclusive of load (except for SMA91E, ESR and EF emitters, which operate from 10 to 250V ac or dc, 10 mA max.)
Supply Protection Circuitry	Protected against reverse polarity and transient voltages
Output Configuration	Bipolar: One current sourcing (PNP) and one current sinking (NPN) open-collector transistor
Output Rating	250 mA continuous, each output Off-state leakage current: less than 10 microamps Output saturation voltage: (PNP output) less than 1 volt at 10 mA and less than 2 volts at 250 mA Output saturation voltage: (NPN output) less than 200 millivolts at 10 mA and less than 1 volt at 250 mA
Output Protection Circuitry	Protected against false pulse on power-up and continuous overload or short-circuit of outputs
Output Response Time	Receivers only: 8 milliseconds ON and 4 milliseconds OFF, independent of signal strength. All other models: 4 milliseconds ON/OFF NOTE: 100 millisecond delay on power-up; outputs do not conduct during this delay.
Repeatability	Opposed and Glass Fiber Optic Emitter-Receiver pairs: 1.0 millisecond Retro, Diffuse, Convergent and Glass Fiber Optic Models: 1.3 milliseconds
Adjustments	Light/Dark Operate select switch and Sensitivity control potentiometer, both located at rear of sensor
Indicators	Alignment Indicating Device (AID [™]) lights a top-mounted red LED indicator whenever the sensor sees a "light" condition; its pulse rate is proportional to the light signal strength (the stronger the signal, the faster the pulse rate). Model SMA91E and SM91ESR emitters: visible-red "tracer beam" indicates "Power ON" and enables line-of-sight alignment.
Construction	Reinforced thermoplastic polyester housing, totally encapsulated, molded acrylic lenses and stainless steel hardware
Environmetal Rating	Meets NEMA standards 1, 2, 3, 3S, 4, 4X, 12 and 13; IEC IP66
Connections	PVC-jacketed 2 m (6.5') or 9 m (30') cables or 4-pin Mini-style quick-disconnect (QD) fitting available. NOTE: Opposed-mode emitters use 3-pin Mini-style QD fitting. See page 7.
Operating Conditions	Temperature: -20° to +70° C (-4° to +158° F) Maximum relative humidity: 90% at 50° C (non-condensing)
Certifications	

DC Hookups

 Banner Engineering Corp. • Minneapolis, MN U.S.A. www.bannerengineering.com • Tel: 763.544.3164

	Specifications – AC Models
Supply Voltage and Current	24 to 250V ac (50/60 Hz), except for SMA91E, ESR and EF emitters, which operate from 10 to 250V ac or dc
Supply Protection Circuitry	Protected against transient voltages
Output Configuration	SPST SCR solid-state relay with either normally closed or normally open contact (light/dark operate selectable); 2-wire hookup
Output Rating	Minimum load current 10 mA, max. steady-state load capability 750 mA to 50° C ambient (122° F), 500 mA to 70° C ambient (158° F) Inrush capability: 4 amps for 1 second (non-repetitive) Off-state leakage: current less than 1.7 mA rms On-state voltage drop: 5 volts rms at 750 mA load, 10 volts rms at 15 mA load
Output Protection Circuitry	Protected against false pulse on power-up
Output Response Time	Receivers only: 8 milliseconds ON and 4 milliseconds OFF, independent of signal strength All other models: 8 milliseconds ON and OFF OFF time does not include load response of up to 1/2 ac cycle (8.3 milliseconds). Response time specification of the load should be considered when total response time is important. NOTE: 300 millisecond delay on power-up; outputs do not conduct during this delay.
Repeatability	Opposed and Glass Fiber Optic Emitter-Receiver pairs: 1.0 millisecond Retro, Diffuse, Convergent and Glass Fiber Optic: 2.6 milliseconds
Adjustments	Light/Dark Operate select switch and Sensitivity control potentiometer, both located at rear of sensor
Indicators	Top-mounted red LED indicator lights when output is conducting. Model SMA91E and SM91ESR emitters: visible-red "tracer beam" indicates "Power ON" and enables line-of- sight alignment.
Construction	Reinforced thermoplastic polyester housing, totally encapsulated, molded acrylic lenses and stainless steel hardware
Environmetal Rating	Meets NEMA standards 1, 2, 3, 3S, 4, 4X, 12 and 13; IEC IP66
Connections	PVC-jacketed 2 m (6.5') or 9 m (30') cables or 3-pin Mini-style (QD) fitting available. See page 7.
Operating Conditions	Temperature: -20° to +70° C (-4° to +158° F) Maximum relative humidity: 90% at 50° C (non-condensing)
Application Notes	 i) 912 Series ac sensors can be destroyed from overload conditions. ii) Use on low voltage requires careful analysis of the load to determine if the leakage current or on-state voltage of the sensor will interfere with proper operation of the load. iii) The false-pulse protection feature may cause momentary drop-out of the load when the sensor is wired in series or parallel with mechanical switch contacts.
Certifications	

AC Hookups

Accessories

Quick-Disconnect Cables

Cable: PVC jacket, polyurethane connector body; nylon coupling nut **Conductors:** 18 AWG, high-flex stranded, PVC insulation, gold plated contacts **Temperature:** -40° to +80° C (-40° to +176° F)

Style	Model	Length	Dimensions	Pinout (Female View)
3-Pin Mini-style Female, Straight	MBCC-306 MBCC-312 MBCC-330	2 m (6.5') 4 m (12') 9 m (30')	61 mm max. (2.4") 7/8-16UN-2B	Black Wire Blue Wire Blue Wire
4-Pin Mini-style Female, Straight	MBCC-406 MBCC-412 MBCC-430	2 m (6.5') 4 m (12') 9 m (30')	28 mm max. (1.1")	White Wire Brown Wire

Cabling Accessories

Model	Description	
AC-6 PVC-6 RF1-2NPS	2 m (6.5') armored cable jacket 2 m (6.5') flexible PVC tubing (not for QD models) Compression fitting for attaching armored cable or PVC tubing	I.D. 5/16"; O.D. 7/16" I.D. 1/4"; O.D. 3/8" –
HF1-2NPS	 Flexible black nylon cable protector Includes a neoprene gland that compresses around the VALU-BEAM cable to provide an additional seal against moisture Resistant to gasoline, alcohol, oil, grease, solvents and weak acids Working temperature range of -30° to +100° C (-22° to +212° F) 	

Extension Cables (without connectors)

The following cables are available for extending the length of existing sensor cable. These are 30 m (100') lengths of VALU-BEAM cable. This cable may be spliced to existing cable. Connectors, if used, must be customer-supplied.

Model	Туре	Used With:
EC312-100	4-conductor	SM912 Series dc sensors
EC312A-100	2-conductor	For all emitters and SM2A912 Series ac sensors

Retroreflective Targets

Banner offers a wide selection of high-quality retroreflective targets. See the Accessories section of your current Banner Photoelectric Sensors catalog for complete information.

NOTE: Polarized sensors require corner cube type retroreflective targets. Non-polarized sensors may use any retroreflective target.

Replacement Lens Assemblies

VALU-BEAM lens assemblies are field-replaceable. In addition, some lenses may be used to convert from one sensing mode to another, or to change the sensing range of a particular sensor. The possible conversions are listed in the table below.

Models	Description	Possible Sensing Mode or Range Changes
UC-900AG	Replacement lens for LVAG	Change LV to LVAG
UC-900C	Replacement lens for C and CV	Change LV to CV
UC-900DSR	Replacement lens for DSR, ESR, and RSR	Change D or F to DSR, EF to ESR, and RF to RSR
UC-900F	Replacement lens for F	Change D to F and DSR to F
UC-900FP	Replacement lens for FP	-
UC-900L	Replacement lens for E, R, LV, and D	Change LVAG to LV, CV to LV, DSR to D, and F to D
UC-900J	Attach to E, R, ESR, RSR, LV, and D models	Flat polycarbonate dust cover

P/N 03467 rev. E

Banner Engineering Corp., 9714 Tenth Ave. No., Minneapolis, MN USA 55441 • Phone: 763.544.3164 • www.bannerengineering.com • Email: sensors@bannerengineering.com