Electronic timers

Product group picture

Electronic timers

Table of contents
Electronic timers 1/2
Overview 1/3
Approvals and marks $1 / 4$
CT-D range 1/5
Table of contents 1/6
Benefits and advantages 1/7
Ordering details 1/8
Function diagrams 1/9
Connection diagrams 1/12
Technical data 1/13
Technical data, Technical diagrams 1/15
Wiring notes, Dimensional drawings 1/16
CT-E range 1/17
Table of contents 1/18
Benefits and advantages 1/19
Ordering details 1/20
Function diagrams 1/22
Connection diagrams 1/27
Connection diagrams, Technical diagrams 1/28
Technical data 1/29
Wiring notes, Dimensional drawings 1/31
CT-S range 1/33
Table of contents 1/34
Benefits and advantages 1/35
Ordering details - multifunctional 1/37
Ordering details - singlefunctional 1/38
Ordering details - Accessories 1/39
Function diagrams 1/41
Connection diagrams 1/49
Technical data 1/52
Technical diagrams 1/55
Wiring notes, Dimensional drawings 1/56

Electronic timers

Overview

Electronic timers
Approvals and marks

－exis		CT－D																		
Approv		$\stackrel{N}{N}$	$\begin{aligned} & \overline{\text { N}} \\ & \sum_{\dot{N}}^{\stackrel{1}{0}} \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{N}{0} \\ & \stackrel{\sim}{U} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ヘ̈ } \\ & \stackrel{H}{O} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { ָָ } \\ & \stackrel{1}{⿺} \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{N}{1} \\ & \stackrel{y}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{N}{\dot{0}} \\ & \stackrel{y}{u} \\ & \stackrel{H}{0} \end{aligned}$	$\begin{aligned} & \stackrel{N}{\dot{O}} \\ & \frac{V}{\dot{O}} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Oí } \\ & \stackrel{1}{0} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \underset{\sim}{c} \\ & \mathbb{N} \\ & \stackrel{H}{0} \end{aligned}$							
，©	UL 508，CAN／CSA C22．2 No． 14	－	－	－	－	－	－	－	－	－	\bullet	－	\bullet							
${ }^{\text {c }}$	CB scheme	－	－	－	－	－	－	－	－	－	－	－	－							
E日［	EAC	－	－	－	－	－	－	\square	－	－	－	－	－							
（c）	cCC	－	－	－	－	－	－	－	－	－	－	－	－							
（1）	RMRS	\cdots	\cdot	－	\cdot	－	－	－	－	－	－									
Marks																				
c ϵ	CE	－	\bullet	\bullet	－	－	－	－	－	－	－	－	－							
C	C－Tick	－	－	－	－	－	－	－	－	－	－	－	－							

－existing －pending		CT－E																	
Approvals		$\sum_{\stackrel{N}{0}}^{\stackrel{u}{u}}$	$\begin{aligned} & \text { 岃 } \\ & \stackrel{\text { H }}{0} \end{aligned}$			$\sum_{\substack{1 \\ 0}}^{\stackrel{1}{0}}$				$\begin{aligned} & \text { 岗 } \\ & \text { 응 } \end{aligned}$			$\sum_{\stackrel{\rightharpoonup}{U}}^{\stackrel{u}{U}}$						
©	UL 508，CAN／CSA C22．2 No． 14	－	－	－	－	－	－	－	－	－	－		－	－	－				
（1）	GL	－	－	－	－	－	－	－	－	－	－		－	－	－				
${ }^{\text {cB }}$	CB scheme	－	－	－	－	－	－	－	－	－	－								
EH［	EAC	\square	\square	\square	\square	－	－	\square	\square	\square	\square		\square	\square	\square				
©	CCC	－	－	\square	－	－	－	－	－	－	－								
©	RMRS	－	－	－	－	－	－	－	－	－	．		－	－	\bullet				
Marks																			
c ϵ	CE	－	－	－	－	－	－	－	－	－	－		－	－	\square				
c	C－Tick	－	－	－	．	－	－	－	－	－	－		－	－	－				

－existing －pending		CT－S																	
Approvals		$\stackrel{0}{\omega}$ $\underset{j}{N}$ \sum_{i}^{0} $\stackrel{N}{0}$			$\stackrel{N}{\stackrel{n}{0}}$	$\stackrel{0}{0}$ $\underset{N}{N}$ \sum_{i}^{∞} $\stackrel{1}{0}$	$\begin{aligned} & \stackrel{\sim}{\omega} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\infty} \\ & \sum_{i}^{0} \end{aligned}$	$\begin{aligned} & \frac{0}{\omega} \\ & \stackrel{N}{N} \\ & \underset{\sim}{\omega} \\ & \stackrel{\sim}{4} \\ & \stackrel{1}{0} \end{aligned}$		n $\frac{0}{\omega}$ ω ω 0 $\stackrel{1}{4}$ $\stackrel{5}{0}$				$\begin{aligned} & \frac{0}{\omega} \\ & \stackrel{\omega}{N} \\ & \omega \\ & \underset{\sim}{x} \\ & \stackrel{\tilde{1}}{心} \end{aligned}$					¢
，＠＂	UL 508，CAN／CSA C22．2 No． 14	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－			
（1）	GL	－	－	－	－	－	－	－	－	\bullet	－	－	－	－		－			
EH［	EAC	\square	－	－	\square	－	－	－	－	－	\square	－	－	\square	\square	－	－	\square	\square
${ }^{\text {cB }}$	CB scheme	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	\bullet
（c）	CCC	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
（1）	RMRS	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	\bullet
\％	Rail applications ${ }^{11}$		－	－	\bullet				－		－			－					
Marks																			
C ϵ	CE	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
C	C－Tick	－	－	－	－	－	－	－	－	－	－	－	\bullet	－	－	－	\square	\square	\square

[^0]CT-D range
Product group picture

CT-D range

Table of contents
CT-D Range
Product group picture
Product group picture
Table of contents 1/6
Benefits and advantages 1/7
Ordering details 1/8
Function diagrams 1/9
Connection diagrams 1/12
Technical data 1/13
Technical data, Technical diagrams 1/15
Wiring notes, Dimensional drawings 1/16

CT-D range

Benefits and advantages

Characteristics

- Diversity:
- 2 multifunction timers

■ 10 single-function timers

- Control supply voltages:
- Wide range: 12-240 V AC/DC

■ Multi range: 24-48 V DC, 24-240 V AC

- 7 time ranges from 0.05 s to 100 h or 4 time ranges from 0.05 s to 10 min
- Width of only 17.5 mm
- Light-grey housing in RAL 7035
- Devices with:

1 c/o contact ($250 \mathrm{~V} / 6 \mathrm{~A}$) or $2 \mathrm{c} / \mathrm{o}$ contacts ($250 \mathrm{~V} / 5 \mathrm{~A}$) Control input: voltage-related triggering, polarized, capable of switching parallel loads

- Approvals / Marks (partly pending, details see page 1/4)

Benefits

Direct reading scales (1)
Direct setting of the time delay without any additional calculation provides accurate time delay adjustment.

LEDs for status indication (2)
All actual operational states are displayed by front-face LEDs, thus simplifying commissioning and troubleshooting.

Switching currents

The CT-D range timers allow an output load of up to 6 A on devices with $1 \mathrm{c} / \mathrm{o}$ contact and up to 5 A on devices with $2 \mathrm{c} / \mathrm{o}$ contacts.

Connection terminals
Wide terminal spacing allows connection of wires:
$2 \times 1.5 \mathrm{~mm}^{2}\left(2 \times 16\right.$ AWG) with wire end ferrules or $2 \times 2.5 \mathrm{~mm}^{2}$ (2×14 AWG) without ferrules.

Width $17,5 \mathrm{~mm}$ (4)
With their width of 17.5 mm only, the CT-D range timers are ideally suited for installation in distribution panels.

Operating controls
1 LEDs for status indication
U - green LED:
\checkmark control supply voltage applied
๑๘ timing
R, R1, R2 - yellow LED:
\checkmark output relay energized
2 Time range adjustment
3 Fine adjustment of the time delay
4 Preselection of the timing function

CT-D range
 Ordering details

Description
The CT-D range in MDRC design with a width of only 17.5 mm fits into all domestic installation and distribution panels.
The CT-D range represents a link between industry and the installation types. For maximum flexibility in operation, 10 single-function as well as 2 multifunction devices with 7 timing functions are available. The devices offer 4 or 7 time ranges from 0.05 seconds up to 100 hours. Their wide input range allows the use in applications worldwide..

Ordering details								
Timing function	Rated control supply voltage	Time ranges	Control input	Output	Type	Order code	Price 1 pce	Weight (1 pce) kg (lb)
Multifunctional ${ }^{1)}$	$\begin{aligned} & 24-240 \text { V AC } \\ & 24-48 \text { V DC } \end{aligned}$	$\begin{aligned} & 7(0.05 \mathrm{~s} \mathrm{-} \\ & 100 \mathrm{~h}) \end{aligned}$	\square	$1 \mathrm{c} / \mathrm{o}$	CT-MFD. 12	1SVR500020R0000		$\begin{aligned} & 0.060 \\ & (0.132) \end{aligned}$
Multifunctional ${ }^{11}$	$\begin{aligned} & 12-240 \\ & V \text { AC/DC } \end{aligned}$	$\begin{aligned} & 7(0.05 \mathrm{~s} \mathrm{-} \\ & 100 \mathrm{~h}) \end{aligned}$	\square	$2 \mathrm{c} / \mathrm{o}$	CT-MFD. 21	1SVR500020R1100		$\begin{aligned} & 0.065 \\ & (0.143) \end{aligned}$
ON-delay	$\begin{aligned} & 24-240 \text { V AC } \\ & 24-48 \mathrm{~V} \mathrm{DC} \end{aligned}$	$\begin{aligned} & 7(0.05 \mathrm{~s}- \\ & 100 \mathrm{~h}) \end{aligned}$	-	$1 \mathrm{c} / \mathrm{o}$	CT-ERD. 12	1SVR500100R0000		$\begin{aligned} & 0.060 \\ & (0.132) \end{aligned}$
			-	$1 \mathrm{c} / \mathrm{o}$	CT-ERD. 22	1SVR500100R0100		$\begin{aligned} & 0.065 \\ & (0.143) \end{aligned}$
OFF- delay			\square	$1 \mathrm{c} / \mathrm{o}$	CT-AHD. 12	1SVR500110R0000		$\begin{aligned} & 0.060 \\ & (0.132) \end{aligned}$
			\square	$2 \mathrm{c} / \mathrm{o}$	CT-AHD. 22	1SVR500110R0100		$\begin{aligned} & 0.065 \\ & (0.143) \end{aligned}$
ImpulseON			-	$1 \mathrm{c} / \mathrm{o}$	CT-VWD. 12	1SVR500130R0000		$\begin{aligned} & 0.060 \\ & (0.132) \end{aligned}$
Flasher starting with ON			-		CT-EBD. 12	1SVR500150R0000		
Pulse generator		$\begin{aligned} & 2 \times 7(0.05 \mathrm{~s}- \\ & 100 \mathrm{~h}) \end{aligned}$	\square		CT-TGD.122)	1SVR500160R0000		$\begin{aligned} & 0.060 \\ & (0.132) \end{aligned}$
			\square	$2 \mathrm{c} / 0$	CT-TGD. 22^{21}	1SVR500160R0100		$\begin{aligned} & 0.065 \\ & (0.143) \end{aligned}$
Star-delta changeover		$\begin{aligned} & 4(0.05 \mathrm{~s}- \\ & 10 \mathrm{~min}) \end{aligned}$	-	$2 \mathrm{c} / \mathrm{o}$	$\begin{aligned} & \text { CT-SDD. } 22^{3} \\ & \text { CT-SAD. } 22^{4} \end{aligned}$	1SVR500211R0100 1SVR500210R0100		$\begin{aligned} & 0.065 \\ & (0.143) \end{aligned}$

${ }^{1}$) Functions: ON-delay, OFF-delay with auxiliary voltage, Impulse-ON, Impulse-OFF with auxiliary voltage,
Flasher starting with ON, Flasher starting with OFF, Pulse former
${ }^{2)}$ ON and OFF times adjustable independently: 2×7 time ranges $0.05 \mathrm{~s}-100 \mathrm{~h} \square$ Control input with voltage-related triggering
${ }^{3}$) Transition time 50 ms fixed
${ }^{4)}$ Transition time adjustable

Synonyms

used expression	alternative expression(s)	used expression	alternative expression(s)
1 c/o contact	SPDT	voltage-related	wet / non-floating
2 c/o contacts	DPDT	volt-free	dry / floating

CT-D range
 Function diagrams

1 Remarks

Legend

$\square \quad$ Control supply voltage not applied / Output contact open Control supply voltage applied / Output contact closed
A1-Y1/B1 Control input with voltage-related triggering

Terminal designations on the device and in the diagrams
The 1st c/o contact is always designated 15-16/18.
The 2nd c/o contact is designated 25-26/28.
The n/o contacts of the star-delta timers are designated with 17-18 and 17-28.
Control supply voltage is always applied to terminals A1-A2.

Function of the yellow LED
The yellow LED R glows as soon as the output relay energizes and turns off when the output relay de-energizes.

ON-delay
 (Delay on make)
 CT-ERD, CT-MFD

This function requires continuous control supply voltage for timing. Timing begins when control supply voltage is applied. The green LED flashes during timing. When the selected time delay is complete, the output relay energizes and the flashing green LED turns steady.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.
Control input A1-Y1/B1 of the CT-MFD is disabled when this function is selected.

$1 \Omega \boxtimes$ Impulse-ON

(Interval)
CT-VWD, CT-MFD
This function requires continuous control supply voltage for timing. The output relay energizes immediately when control supply voltage is applied and de-energizes after the set pulse time is complete. The green LED flashes during timing. When the selected pulse time is complete, the flashing green LED turns steady.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.
Control input $\mathrm{A} 1-\mathrm{Y} 1 / \mathrm{B} 1$ of the CT-MFD is disabled when this function is selected.

OFF-delay with auxiliary voltage
 (Delay on break)
 CT-AHD, CT-MFD

This function requires continuous control supply voltage for timing. If control input $\mathbf{A 1}-\mathrm{Y} 1 / \mathrm{B} 1$ is closed, the output relay energizes immediately. If control input A1-Y1/B1 is opened, the time delay starts. The green LED flashes during timing. When the selected time delay is complete, the output relay de- energizes and the flashing green LED turns steady.
If control input A1-Y1/B1 recloses before the time delay is complete, the time delay is reset and the output relay does not change state. Timing starts again when control input A1-Y1/B1 re-opens.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

$\mathrm{t}=$ adjusted time delay

Impulse-OFF with auxiliary voltage
(Trailing edge interval)
CT-MFD
This function requires continuous control supply voltage for timing. If control supply voltage is applied, opening control input A1-Y1/B1 energizes the output relay immediately and starts timing. The green LED flashes during timing. When the selected pulse time is complete, the output relay de-energizes and the flashing green LED turns steady. Closing control input A1-Y1/B1, before the time delay is complete, deenergizes the output relay and resets the time delay.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

CT-D range
 Function diagrams

\measuredangle Flasher, starting with the ON time (Recycling equal times, ON first) CT-EBD, CT-MFD

Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an ON time first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.
Control input A1-Y1/B1 of the CT-MFD is disabled when this function is selected.

Flasher, starting with the OFF time
(Recycling equal times, OFF first) CT-MFD
Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an OFF time first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.
Control input A1-Y1/B1 of the CT-MFD is disabled when this function is selected.

π Pulse former (Single shot) CT-MFD

This function requires continuous control supply voltage for timing. Closing control input A1-Y1/B1 energizes the output relay immediately and starts timing. Operating the control contact switch A1-Y1/B1 during the time delay has no effect. The green LED flashes during timing. When the selected ON time is complete, the output relay de-energizes and the flashing green LED turns steady. After the ON time is complete, it can be restarted by closing control input A1-Y1/B1.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

Pulse generator, starting with the ON or OFF time (Recycling unequal times, ON or OFF first) CT-TGD
This function requires continuous control supply voltage for timing. Applying control supply voltage, with open control input A1-Y1/B1, starts timing with an ON time first. Applying control supply voltage, with closed control input A1-Y1/B1, starts timing with an OFF time first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time.
The ON \& OFF times are independently adjustable.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

CT-D range

Function diagrams

$\Delta \quad$ Star-delta change-over

(Star-delta starting)
CT-SDD, CT-SAD
This function requires continuous control supply voltage for timing. Applying control supply voltage to terminals A1-A2, energizes the star contactor connected to terminals 17-18 and begins the set starting time t_{1}. The green LED flashes during timing. When the starting time is complete, the first output contact de-energizes the star contactor.
Now, the transition time t_{2} starts. When the transition time is complete, the second output contact energizes the delta contactor connected to terminals 17-28. The delta contactor remains energized as long as control supply voltage is applied to the unit.

Control circuit diagram

Power circuit diagram

CT－D range

Connection diagrams

CT－MFD． 21

A1	15	25
18	16	Y1／B1
28	26	A2

$\begin{array}{ll}\text { A1－A2 } & \text { Supply：} \\ & 12-240 \vee ~ A C / D C\end{array}$

15－16／18 1．c／o contact
25－26／28 2．c／o contact
A1－Y1／B1 Control input

CT－MFD． 12

A1－A2 Supply： 24－48 V DC or 24－240 V AC
15－16／18 1．c／o contact

A1－Y1／B1 Control input
\triangle CT－ERD． 22

A1	15	25
18	16	
28	26	A2

A1－A2	Supply：
	$24-48 \vee ~ D C ~ o r ~$
	$24-240 \vee$ AC
$15-16 / 18$	1．c／o contact
$25-26 / 28$	2．c／o contact

\triangle CT－ERD． 12

A1－A2 Supply： 24－48 V DC or
$24-240$ V AC
15－16／18 1．c／o contact

1』囚 CT－VWD． 12

A1－A2 Supply：
24－48 V DC or
24－240 V AC
15－16／18 1．c／o contact
$\Omega \triangle C T-E B D .12$

几 CT－TGD． 22

A1－A2	Supply：	A1－A2	Supply：
	$24-48 \vee$ DC or		$24-48 \vee$ DC or
	$24-240 \vee$ AC		$24-240 \vee$ AC
$15-16 / 18$	1．c／o contact	$15-16 / 18$	1. c／o contact
$25-26 / 28$	2．c／o contact		
A1－Y1／B1	Control input	A1－Y1／B1	Control input

A1－Y1／B1 Control input
\triangle CT－SDD． 22

A1－A2	Supply： 24－48 V DC or $24-240$ V AC
17－18	1．n／o contact （star contactor）
17－28	2．n／o contact （delta contactor）

（delta contactor）
\triangle CT－SAD． 22

9090」 09ト 乙૬己 Оロכ乙

CT-D range
 Technical data

Data at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and rated values, unless otherwise indicated

CT-D range

Technical data

	CT-D with $1 \mathrm{c} / \mathrm{o}$ contact	CT-D with 2 c/o contacts	CT-MFD. 21
Electrical connection			
Wire size fine-strand with(out) wire end ferrule	$\begin{aligned} & 2 \times 0.5-1.5 \mathrm{~mm}^{2}(2 \times 20-16 \mathrm{AWG}) \\ & 1 \times 0.5-2.5 \mathrm{~mm}^{2}(1 \times 20-14 \mathrm{AWG}) \end{aligned}$		
	$\begin{aligned} & 2 \times 0.5-1.5 \mathrm{~mm}^{2}(2 \times 20-16 \text { AWG }) \\ & 1 \times 0.5-4 \mathrm{~mm}^{2}(1 \times 20-12 \text { AWG }) \end{aligned}$		
Stripping length	$7 \mathrm{~mm}(0,28 \mathrm{in})$		
Tightening torque	0.5-0.8 Nm (4.43-7.08 lb.in)		
Environmental data			
Ambient temperature range ${ }_{\text {a }}$	$-20 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C}$		
Damp heat (cyclic)	6×24 h cycles, $55^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$		
Vibration (sinusoidal)	$40 \mathrm{~m} / \mathrm{s}^{2}, 20$ cycles, $10 \ldots .150 \ldots 10 \mathrm{~Hz}$		
Shock (half-sine) \quad EEC/EN 60068-2-27	$100 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}$		
Isolation data			
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$ between all isolated circuits	4 kV ; 1.2/50 $\mu \mathrm{s}$		
Pollution category	3		
Overvoltage category	IIII		
Rated insulation voltage U_{i} (300 V		
output circuit $1 /$ output circuit 2	300 V		
Basic insulation (IEC/EN 61140)	300 V		
Protective separation (VDE O106 part 101 and in input circuit/output circuit part 101/A1; IEC/EN 61140)	250 V		
Power-frequency withstand voltage test (test vol- tage, routine test)	$2.5 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~s}$		
Standards			
Product standard	IEC 61812-1, EN 61812-1 + A11, DIN VDE 0435 part 2021		
Low Voltage Directive	2006/95/EC		
EMC Directive	2004/108/EC		
RoHS Directive	2002/95/EC		
Electromagnetic compatibility			
Interference immunity to	IEC/EN 61000-6-1, IEC/EN 61000-6-2		
electrostatic discharge	Level $3(6 \mathrm{kV} / 8 \mathrm{kV}$)		
radiated, radio-frequency, electromagnetic field IEC/EN 61000-4-3	Level $3(10 \mathrm{~V} / \mathrm{m})$		
electrical fast transient / burst	Level $3(2 \mathrm{kV} / 5 \mathrm{kHz})$		
surge	Level 4 (2 kV L-L)		
conducted disturbances, induced by radio-frequency fields \quad IEC/EN 61000-4-6	Level 3 (10 V)		
Interference emission	IEC/EN 61000-6-3, IEC/EN 61000-6-4		
high-frequency radiated	Class B		
high-frequency conducted IEC/CISPR 22, EN 55022	Class B		

„Approvals and marks" see page 1/4.

CT-D range

Technical data, Technical diagrams

Load limit curves

AC load (resistive)

CT-D.1x

CT-D.2x

Derating factor F
for inductive AC load

CT-D.1x

CT-D.2x

Contact lifetime

CT-D range

Wiring notes, Dimensional drawings

Wiring notes for devices with control input
A parallel load to the control input is possible

Dimensional drawings
dimensions in mm

CT-D devices with $1 \mathrm{c} / \mathrm{o}$ contact or $2 \mathrm{n} / \mathrm{o}$ contacts

CT-D devices with $2 \mathrm{c} / \mathrm{o}$ contacts

CT-E range
 Product group picture

CT-E range

Table of contents
CT-E Range
Table of contents 1/18
Benefits and advantages 1/19
Ordering details 1/20
Function diagrams 1/22
Connection diagrams 1/27
Connection diagrams, Technical diagrams 1/28
Technical data 1/29
Wiring notes, Dimensional drawings 1/31
Notes 1/32

CT-E range
 Benefits and advantages

- Diversity:
- 2 multifunction timers
- 56 single-function timers
- 4 switching relays
- Control supply voltages:
- Dual range: 24 V AC/DC
- Single range: 110-130 V AC, 220-240 V AC
- Wide range: 24-240 V AC/DC (CT-MFE)
- Time ranges
- 5 single ranges: $0.05-1 \mathrm{~s}, 0.1-10 \mathrm{~s}, 0.3-30 \mathrm{~s}, 3-300 \mathrm{~s}, 0.3-30 \mathrm{~min}$
- 8 time ranges: $0.05 \mathrm{~s}-100 \mathrm{~h}$ (CT-MFE)
- Devices with $1 \mathrm{c} / \mathrm{o}$ (SPDT) contact ($250 \mathrm{~V} / 4 \mathrm{~A}$) or solid-state output for high switching frequencies (thyristor 0.8 A)
- Switching relay CT-IRE for added switching contacts with either side-by-side or diagonally positioned connection terminals
- Approvals / Marks (details see page 1/4)

Benefits
Direct reading scales
Direct setting of the time delay without any additional calculation provides accurate time delay adjustment.

LEDs for status indication (2)
All actual operational states are displayed by front-face LEDs, thus simplifying commissioning and troubleshooting.

Connection screws in M3 (Pozidrive 1)
Easy and fast tightening and release of the connection screws with pozidrive, pan- or crosshead screwdriver.

Solid-state output (4)
Devices with solid-state output are the perfect solution for high operation cycles.

Synonyms

used expression	alternative expression(s)	used expression	alternative expression(s)
1 c/o contact	SPDT	voltage-related	wet / non-floating
2 c/o contacts	DPDT	volt-free	dry / floating

Operating controls

1 LEDs for status indication
U - green LED: \downarrow control supply voltage applied
R2: red LED: $\sqrt{ }$ output relay energized
2 Time range adjustment (only multifunctional devices)
3 Fine adjustment of the time delay
4 Preselection of the timing function (only multifunctional devices)

CT-E range Ordering details

Description
The CT-E range with its excellent price/performance ratio offers an ideal solution for serial applications. 56 single-function devices with 5 different time ranges as well as 2 multifunction timers with 6 functions and 8 time ranges offer the highest possible flexibility for almost every application. For high operating cycles, contact-free CT-E timers with solid-state output are available.

Timing function	Rated control supply voltage	Time ranges	Control Input	Output	Type	Order code	Price 1 pce	Weight (1 pce) kg (Ib)
Multifunctional ${ }^{1)}$	$\begin{aligned} & 24-240 \\ & \text { V AC/DC } \end{aligned}$	$\begin{aligned} & 8(0.05 \mathrm{~s}- \\ & 100 \mathrm{~h}) \end{aligned}$	\square	$1 \mathrm{c} / \mathrm{o}$	CT-MFE	1SVR550029R8100		0.08 (0.18)
ON-delay	$\begin{aligned} & 24 \text { V AC/DC, } \\ & 220-240 \vee ~ A C \end{aligned}$	0.1-10 s	-	$1 \mathrm{c} / \mathrm{o}$	CT-ERE	1SVR550107R1100		0.08 (0.18)
		0.3-30 s				1SVR550107R4100		
		3-300 s				1SVR550107R2100		
		0.3-30 min				1SVR550107R5100		
	110-130 V AC	0.1-10 s	-			1SVR550100R1100		
		0.3-30 s				1SVR550100R4100		
		3-300 s				1SVR550100R2100		
		0.3-30 min				1SVR550100R5100		
OFF-delay	24 V AC/DC	0.1-10 s	\square	$1 \mathrm{c} / \mathrm{o}$	CT-AHE	1SVR550118R1100		0.08 (0.18)
		$0.3-30 \mathrm{~s}$				1SVR550118R4100		
		3-300 s				1SVR550118R2100		
	110-130 V AC	0.1-10 s				1SVR550110R1100		
		0.3-30 s				1SVR550110R4100		
		3-300 s				1SVR550110R2100		
	220-240 V AC	0.1-10 s				1SVR550111R1100		
		0.3-30 s				1SVR550111R4100		
		3-300 s				1SVR550111R2100		
OFFdelay ${ }^{2)}$	$\begin{aligned} & 24 \text { V AC/DC, } \\ & 220-240 \text { V AC } \end{aligned}$	0.1-10 s	-	$1 \mathrm{c} / \mathrm{o}$	CT-ARE	1SVR550127R1100		0.08 (0.18)
		$0.3-30 \mathrm{~s}$				1SVR550127R4100		
	110-130 V AC	0.1-10 s				1SVR550120R1100		
		0.3-30 s				1SVR550120R4100		
ImpulseON	$\begin{aligned} & 24 \text { V AC/DC, } \\ & 220-240 \text { V AC } \end{aligned}$	$0.1-10 \mathrm{~s}$	-	$1 \mathrm{c} / \mathrm{o}$	CT-VWE	1SVR550137R1100		0.08 (0.18)
		0.3-30 s				1SVR550137R4100		
		$3-300 \mathrm{~s}$				1SVR550137R2100		
	110-130 V AC	0.1-10 s				1SVR550130R1100		
		0.3-30 s				1SVR550130R4100		
		$3-300 \mathrm{~s}$				1SVR550130R2100		
Impulse$\mathrm{OFF}^{2)}$	24 V AC/DC	0.05-1 s	-	$1 \mathrm{c} / \mathrm{o}$	CT-AWE	1SVR550158R3100		0.08 (0.18)
	$110-130 \mathrm{~V}$ AC					1SVR550150R3100		
	220-240 V AC					1SVR550151R3100		

[^1]

CT-AHE

ON-delay
OFF-delay
Impulse-ON
Impulse-OFF
Flasher starting with ON
Flasher staring with OFF
Pulse former

CT-E range
 Ordering details

CT-AWE

CT-IRE

Timing function	Rated control supply voltage	Time ranges	Control Input	Output	Type	Order code	Price 1 pce	Weight (1 pce) kg (lb)
ImpulseOFF	24 V AC/DC	0.1-10 s	\square	$1 \mathrm{c} / 0$	CT-AWE	1SVR550148R1100		0.08 (0.18)
		0.3-30 s				1SVR550148R4100		
		$3-300 \mathrm{~s}$				1SVR550148R2100		
	110-130 V AC	0.1-10 s				1SVR550140R1100		
		0.3-30 s				1SVR550140R4100		
		$3-300 \mathrm{~s}$				1SVR550140R2100		
	220-240 V AC	0.1-10 s				1SVR550141R1100		
		0.3-30 s				1SVR550141R4100		
		$3-300 \mathrm{~s}$				1SVR550141R2100		
Flasher staring with OFF	$\begin{aligned} & 24 \text { V AC/DC, } \\ & 220-240 \text { V AC } \end{aligned}$	0.1-10 s	-	$1 \mathrm{c} / 0$	C) ${ }_{6}$ (EBE	1SVR550167R1100		0.08 (0.18)
	110-130 V AC					1SVR550160R1100		
Star-delta changeover twice ONdelayed	$\begin{aligned} & 24 \text { V AC/DC, } \\ & 220-240 \text { V AC } \end{aligned}$	0.1-10 s	-	$1 \mathrm{c} / 0$	CT-YDE	1SVR550207R1100		0.08 (0.18)
		0.3-30 s				1SVR550207R4100		
		$3-300 \mathrm{~s}$				1SVR550207R2100		
	110-130 V AC	0.1-10 s				1SVR550200R1100		
		0.3-30 s				1SVR550200R4100		
		3-300 s				1SVR550200R2100		
Star-delta changeover with impuls	$\begin{aligned} & 24 \text { V AC/DC, } \\ & 220-240 \text { V AC } \end{aligned}$	0.3-30 s	-	$\begin{aligned} & 1 \mathrm{n} / \mathrm{o}+ \\ & 1 \mathrm{n} / \mathrm{c} \end{aligned}$	CT-SDE	1SVR550217R4100		0.08 (0.18)
	110-130 V AC					1SVR550210R4100		
	$380-415$ V AC					1SVR550212R4100		
Multifunctional ${ }^{8)}$	$\begin{aligned} & 24-240 \\ & \text { V AC/DC } \end{aligned}$	$\begin{aligned} & 0.1-10 \mathrm{~s} . \\ & 3-300 \mathrm{~s} \end{aligned}$	-		CT-MKE	1SVR550019R0000		0.08 (0.18)
ON-delay	$\begin{aligned} & 24-240 \\ & \text { V AC/DC } \end{aligned}$	0.1-10 s	-	solidestate	CT-EKE	1SVR550509R1000		0.08 (0.18)
		0.3-30 s				1SVR550509R4000		
		3-300 s				1SVR550509R2000		
OFF-delay	24-240 V AC	0.1-10 s	-		CT-AKE	1SVR550519R1000		0.08 (0.18)
		0.3-30 s				1SVR550519R4000		
		$3-300$ s				1SVR550519R2000		
Switching relay	24 V AC/DC		-	$1 \mathrm{c} / \mathrm{o}$	CT-IRE ${ }^{3)}$	1SVR550228R9100		0.08 (0.18)
	$\begin{aligned} & 220-240 \\ & V \text { AC/DC } \end{aligned}$					1SVR550221R9100		
	24 V AC/DC		-	$1 \mathrm{c} / \mathrm{o}$	CT-IRE 4)	1SVR550238R9100		0.08 (0.18)
	$\begin{aligned} & 220-240 \\ & \text { V AC/DC } \end{aligned}$					1SVR550231R9100		

${ }^{1)}$ without auxiliary voltage
Control input with voltage-related triggering
${ }^{2)}$ with fixed transition time no triggering
${ }^{3)}$ A1/A2 diagonal
4) A1/A2 on top
${ }^{5)}$ solid-state output, functions and time range selection via external jumpers
${ }^{6)}$ symetric ON \& OFF times
7) common contact
${ }^{8)}$ Functions: ON-delay (AC/DC), Impuls-ON (AC only), Flasher starting with OFF (AC only)

Notice

CT-...KE are solid-state timers with thyristor output for 2-wire applications. They are connected directly in series with the control coil of contactors or relays. Voltage should not be applied without a load connected, because there is no current limiting in the unit.

CT-E range
 Function diagrams

Remarks

Legend	
\square	Control supply voltage not applied / Output contact open
A1-Y1/B1	Control supply voltage applied / Output contact closed
Conput with voltage-related triggering	

Terminal designations on the device and in the diagrams
The c/o contact is always designated 15-16/18.
The n/o contacts are designated with 15-16 and 15-18.
Control supply voltage is always applied to terminals A1-A2/B1.

Function of the red LED
The red LED R glows as soon as the output relay energizes and turns off when the output relay de-energizes.
$\boxtimes \quad$ ON-delay (Delay on make)
CT-ERE, CT-MFE
Applying control supply voltage starts timing. When the selected time delay is complete, the output relay energizes. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset. Interrupting control supply voltage before the time delay is complete, resets the time delay. The output relay does not energize.

OFF-delay, with auxiliary voltage (Delay on break) CT-AHE, CT-MFE
This function requires continuous control supply voltage for timing. Timing is controlled by control input $\mathrm{A} 1-\mathrm{Y} 1$. If the control input is closed, the output relay energizes. If control input $\mathrm{A} 1-\mathrm{Y} 1$ is opened, the selected time delay starts. When the time delay is complete, the output relay de-energizes. If control input $\mathrm{A} 1-\mathrm{Y} 1$ is closed before the time delay is complete, the time delay is reset. Timing starts again when the control input re-opens.

$t=$ adjusted time delay
Minimum control pulse length: 20 ms

CT-E range
 Function diagrams

OFF-delay, without auxiliary voltage
(true delay on break) CT-ARE
The OFF-delay function without auxiliary voltage does not require continuous control supply voltage for timing.
Applying control supply voltage, energizes the output relay. If control supply voltage is interrupted, the OFF-delay starts. When timing is complete, the output relay de-energizes. If control supply voltage is reapplied before the time delay is complete, the time delay is reset and the output relay remains energized.
Control supply voltage must be applied for the minimum energizing time (200 ms), for proper operation.

$t=$ adjusted time delay

$1 \curvearrowleft \boxtimes$ Impulse-ON (Interval)
 CT-VWE, CT-MFE

The output relay energizes immediately when control supply voltage is applied and de-energizes after the selected time delay is complete. If control supply voltage is interrupted before the time delay is complete, the output relay de-energizes and the time delay is reset.
Control input $\mathrm{A} 1-\mathrm{Y} 1$ has to be jumpered, when this timing function is selected.

CT-VWE:

CT-MFE:

1』【 Impulse-OFF, with auxiliary voltage (Trailing edge interval) CT-AWE
This function requires continuous control supply voltage for timing. Timing is controlled by control input $\mathrm{A} 1-\mathrm{Y} 1$. If the control input is opened, the output relay energizes and timing begins. When the selected time delay is complete, the output relay de-energizes. Interrupting control supply voltage or closing control input A1-Y1, before the time delay is complete, de-energizes the output relay and resets the time delay.

CT-E range

Function diagrams

Ω Flasher starting with OFF

CT-MFE:

$\square \quad$ Switching relay
 CT-IRE

The switching relay may be used to increase the number of available contacts or to reinforce contacts, or as a coupling/decoupling interface. Applying control supply voltage, energizes the output relay. The output relay de-energizes if control supply voltage is interrupted.

Ω Flasher starting with ON
(Recycling equal times, ON first) CT-MFE
Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an ON time first. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset. Control input $\mathrm{A} 1-\mathrm{Y} 1$ has to be open, when this timing function is selected.
(Recycling equal times, OFF first) CT-EBE, CT-MFE
Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an OFF time first. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset. Control input $\mathrm{A} 1-\mathrm{Y} 1$ has to be jumpered, when this timing function is selected.

CT-EBE:

$$
\mathrm{t}=\text { adjusted flashing time }
$$

CT-E range

Function diagrams

$\Delta \Delta \quad$ Star-delta change-over
CT-YDE
Applying control supply voltage energizes the star contactor (K1) and the line contactor (K2) and begins the set starting time. When the starting time is complete, contact 15-16 de-energizes the star contactor (K1) Now, the fix transition time starts. When the transition time is complete, contact 15-16 energizes the delta contactor (K3).

$\Delta 1 \Omega \quad$ Star-delta change-over CT-SDE
Applying control supply voltage energizes the star contactor (K1) and the line contactor (K2) and begins the set starting time. When the starting time is complete, contact 15-16 de-energizes the star contactor (K1). Now, the fix transition time starts. When the transition time is complete, contact 15-18 energizes the delta contactor (K3).

Control circuit diagram

Power circuit diagram

CT－E range
 Function diagrams

Multifunction timer CT－MKE

Functions and time ranges are programmed by simply plugging in external wire jumpers．

$\searrow \quad$ ON－delay（Delay on Make）

Without external connection．Timing begins when control supply voltage is applied to terminal A1 and the load connected in series with A2．When the selected time delay is complete，the load energizes．If control supply voltage is interrupted，the load de－energizes and the time delay is reset．Interrupting supply voltage before the time delay is complete，resets the time delay．The load does not energize．

1』 \boxtimes Impulse－ON（Interval）

External connection X1－X4 required．The load energizes and timing starts when control supply voltage is applied to terminal A1 and the load connected in series with A2．When the selected time delay is complete，the load de－energizes．Inter－ rupting control supply voltage before the time delay is complete，de－energizes the load and resets the time delay

$\curvearrowleft \boxtimes$ Flasher，starting with ON

External connection $\mathrm{X} 1-\mathrm{X} 4$ and $\mathrm{X} 2-\mathrm{X} 4$ required．When control supply voltage is applied to terminal A1 and the load connected in series with A2，the load energizes and de－energizes with the selected ON \＆OFF times．The ON \＆OFF times are equal．The cycle starts with an ON time first（load energized）．If control supply vol－ tage is interrupted，the load de－energizes and the time delay is reset．

几】 Flasher，starting with OFF
External connection X2－X4 required．When control supply voltage is applied to terminal A1 and the load connected in series with A2，the load energizes and de－ energizes with the selected ON \＆OFF times．The ON \＆OFF times are equal．The cycle starts with an OFF time first（load de－energized）．If control supply voltage is interrupted，the load de－energizes and the time delay is reset

Programming the time ranges
$\mathrm{X}_{3}-\mathrm{X}_{4}$ jumpered： $0,1-10 \mathrm{~s} \quad \mathrm{X}_{3}-\mathrm{X}_{4}$ open：3－300 s

$\boxtimes \quad$ ON－delay（Delay on make）
 CT－EKE

Timing begins when control supply voltage is applied to terminal A1 and the load connected in series with AL．When the selected time delay is complete，the load energizes．The green LED glows as long as the load is energized．
If control supply voltage is interrupted，the load de－energizes and the time delay is reset．Interrupting control supply voltage before the time delay is complete，resets the time delay．The load does not energize．

$t=$ adjusted time delay

OFF－delay，with auxiliary voltage（Delay on break）

 CT－AKEThe OFF－delay function with auxiliary voltage requires continuous control supply voltage at terminal A1，and the load connected in series with AL， for timing．
Timing is controlled by control input Y2－A2．When the control input is closed，the load energizes．If the control input is opened，the selected time delay starts（minimum control pulse length is 20 ms ）．The green LED glows as long as the load is energized．When the selected time delay is complete，the load de－energizes．If control input Y2－A2 is clo－ sed before the time delay is complete，the time delay is reset and the load remains energized．Timing starts again when the control input is re－opened．Interrupting control supply voltage resets the time delay and de－energizes the load．

$\mathrm{t}=$ adjusted time delay

Notice：

CT－．．．KE are solid－state timers with thyristor output for 2－wire applications．They are connected directly in series with the control coil of contactors or relays．Voltage should not be applied without a load connected，because there is no current limiting in the unit．

CT-E range
 Connection diagrams

¢ONNN	$\square C T-A H E{ }^{1)}$		
	${ }^{+} \mathrm{A} 1$	15	Y1
	16	18	A2
			${ }^{2}-$
or	A1(+)-A2	Supply: 24 V AC/DC or $110-240 \mathrm{~V}$ AC or 220-240 V AC	
	A1-Y1	Control input c/o contact	
	15-16/		

A1	15	B1
16	18	A2
A1-A2	Supply: 220-240 V AC or 110-130 V AC	
A1-B1	Supply:	
	24 V AC/DC	
15-16/1	c/o	ntac

$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { U } \\ & 0 \\ & 0 \\ & N \\ & N \\ & \text { N } \\ & 0 \\ & 0 \end{aligned}$	1几 CT-AWE		
	$\oplus_{\text {A1 }}$	15	
	16	18	$\mathrm{A}^{2} \Theta$
	Device without aux. voltage		
	A1(+)-A2		AC/DC or 40 V AC or 40 V AC

$\Delta 1 \Omega \mathrm{CT}-\mathrm{SDE}$

Devices:
1SVR 550210 R4100, 1SVR 550212 R4100
A1-A2 Supply:
110-130 V AC or
$380-415$ V AC
15-16 n/c contact
15-18 n/o contact
with common contact
\square CT-IRE

Supply terminals diagonally positioned
A1-A2 Supply:
24 V AC/DC or 220-240 V AC/DC

11-12/14 c/o contact

CT-E range

Connection diagrams, Technical diagrams

Supply terminals on one side of the device
A1-A2

Supply:

24 V AC/DC or 220-240 V AC/DC
11-12/14 c/o contact

CT-MKE

CT-AKE

2CDC 252167 F0005

1) Wiring notes $1 / 31$

Technical diagrams

Load limit curves
AC load (resistive)

Derating factor F for inductive AC load

DC load (resistive)

GOZO』 \&6L ZGZ OOOZ

220 V 50 Hz AC1
360 cycles/h
Contact lifetime

CT-E range
 Technical data

Technical data

Data at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and rated values, unless otherwise indicated

		CT-E (relays)	CT-E (solid-state)
Input circuit - Supply circuit			
Rated control supply voltage U_{s}	A1-A2, A1-AL	24-240 V AC/DC	
	A1-A2, A1-AL	$24-240$ V AC	
	A1-A2	110-130 V AC	-
	A1-A2	$220-240 \mathrm{~V}$ AC	-
	A1-A2	$380-415 \mathrm{~V}$ AC	-
	A1-B1	24 V AC/DC	-
		-15...+10\%	
Rated frequency	AC/DC versions	DC or $50 / 60 \mathrm{~Hz}$	
	AC versions	50/60 Hz	
Typical current / power consumption	$24-240 \mathrm{~V}$ AC/DC, $24-240 \mathrm{~V}$ AC	approx. 1.0-2.0 VA/W	
	$110-130 \mathrm{VAC}, 220-240 \mathrm{VAC}$	approx. 2.0 VA	-
	$380-415 \mathrm{VAC}$	approx. 3.0 VA	-
	$24 \mathrm{VAC/DC}$	approx. $1.0 \mathrm{VA} / \mathrm{W}$	\cdots
Minimum energizing time	CT-ARE, CT-AWE w/o aux. voltage	200 ms	- $-\ldots \ldots \ldots \ldots$
Current consumption while timing		-	$\begin{aligned} & \leq 2 \mathrm{~mA}(24-60 \vee \mathrm{AC} / \mathrm{DC}) \\ & \leq 8 \mathrm{~mA}(60-240 \vee \mathrm{AC} / \mathrm{DC}) \\ & \text { (CT-AKE only AC) } \end{aligned}$
Input circuit - Control circuit			
Kind of triggering		voltage-related triggering	-
Control input, Control function		start timing external	\cdots
Parallel load / polarized		no/yes ${ }^{1 / 1}$	\cdots
Minimum control pulse length		20 ms	-
Control voltage potential		see rated control supply voltage	-
Timing circuit			
Time ranges	1 of 5 time ranges per single-function device8 time ranges $0.05 \mathrm{~s}-100 \mathrm{~h}$ (CT-MFE)	0.05-1 $\mathrm{s} / 0.1-10 \mathrm{~s} / 0.3-30 \mathrm{~s} / 3-300 \mathrm{~s} / 0.3-30 \mathrm{~min}$	
		1.) $0.05-1 \mathrm{~s}$ 2.) $0.5-10 \mathrm{~s}$ 3.) $5-100 \mathrm{~s}$ 4.) $50-1000 \mathrm{~s}$ 5.) $0.5-10 \mathrm{~min}$ 6.) $5-100 \mathrm{~min}$ 7.) $0.5-10 \mathrm{~h}$ 8.) $5-100 \mathrm{~h}$	-
	2 time ranges 0.1-300 s (CT-MKE)	-	1.) $0.1-10 \mathrm{~s}$ 2.) $3-300 \mathrm{~s}$
Recovery time		$\begin{aligned} & <50 \mathrm{~ms} \\ & \text { CT-ARE: }<200 \mathrm{~ms} \\ & \text { CT-AWE, CT-SDE: }<400 \mathrm{~ms} \\ & \text { CT-YDE: }<500 \mathrm{~ms} \end{aligned}$	CT-EKE: $<50 \mathrm{~ms}$ CT-MKE: $<100 \mathrm{~ms}$ CT-AKE: <300 ms
Accuracy within the rated control supply voltage tolerance		$\Delta t<0.5 \% / \mathrm{V}$	
Accuracy within the temperature range		$\Delta t<0.1 \% /^{\circ} \mathrm{C}$	
		CT-MFE: $\Delta t<0.06 \% /{ }^{\circ} \mathrm{C}$	-
Repeat accuracy (constant parameters)		$\Delta t<1 \%$	
Star-delta transition time	CT-YDE / CT-SDE	$50 \mathrm{~ms} / 30 \mathrm{~ms}$	-
Output circuit			
Kind of output	15-16/18	Relay, $1 \mathrm{c} / \mathrm{o}$ contact $1 \mathrm{n} / \mathrm{c}, 1 \mathrm{n} / \mathrm{o}$ contract with common contact	-
	CT-SDE: 15-16, 15-18		
	A1-A2. A1-AL		Thyristor
Contact material		AgCdO	- -
Rated operational voltage U_{e}		250 V	
Maximum switching voltage		250 VAC, 250 V DC	
$\begin{aligned} & \text { Rated operational current İ } \\ & \text { (IEC/EN 60947-5-1) } \end{aligned}$	AC12 (resistive) at 230 V	4 A	-
	AC15 (inductive) at 230 V	3 A	-
	DC12 (resistive) at 24 V	4 A2 A	-
	DC13 (inductive) at 24 V		-

[^2]
CT-E range

 Technical data| | | CT-E (relays) | CT-E (solid-state) |
| :---: | :---: | :---: | :---: |
| AC rating (UL 508) | Utilization category (Control Circuit Rating Code) | B 300 | - |
| | max. rated operational voltage | 300 V AC | - |
| | Maximum continuous thermal current at B300 | 5 A | - |
| | max. making/breaking apparent power at B300 | $3600 \mathrm{VA} / 360 \mathrm{VA}$ | - |
| Mechanical lifetime | | 30×10^{6} switching cycles | - |
| Electrical lifetime | at AC12, $230 \mathrm{~V}, 4 \mathrm{~A}$ | 0.1×10^{6} switching cycles | \cdots |
| Max. fuse rating to achieve short-circuit protection (IEC/EN 60947-5-1) | n/c contact | 10 A fast-acting, CT-ARE: 5 A | \cdots |
| | n/o contact | 10 A fast-acting, CT-ARE: 5 A | - |
| Minimum load current | | - | CT-MKE: 20 mA CT-EKE, CT-AKE: 10 mA |
| Maximum load current | | - | CT-MKE: 0.8 A at Ta $=20^{\circ} \mathrm{C}$ CT-EKE, CT-AKE: 0.7 A |
| Load current reduction / Derating | | - | $10 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ |
| Maximum surge current | | - | CT-MKE: ≤ 20 A for $\mathrm{t} \leq 20 \mathrm{~ms}$ CT-EKE, CT-AKE: $\leq 15 \mathrm{~A}$ |
| Voltage drop in connected state | | - | $\leq 3 \mathrm{~V}$ |
| Cable length between solid-state timer and an...at 24 V AC | | - | $220 \mathrm{~m} / 22 \mathrm{nF}$ |
| connected load at 50 Hz and a cable capacity of | at 42 VAC | - | $100 \mathrm{~m} / 10 \mathrm{nF}$ |
| | at 60 VAC | - | $65 \mathrm{~m} / 6.5 \mathrm{nF}$ |
| $100 \mathrm{pF} / \mathrm{m}$: | at 110 VAC | - | $50 \mathrm{~m} / 5 \mathrm{nF}$ |
| | at 240 V AC | - | $22 \mathrm{~m} / 2.2 \mathrm{nF}$ |
| General data | | | |
| Duty time | | 100\% | |
| Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) | | $22.5 \times 78 \times 78.5 \mathrm{~mm}(0.886 \times 3.07 \times 3.09 \mathrm{in})$ | |
| Weight | | approx. 80 g (0.176 lib) | |
| Mounting | | DIIN rail (IEC/EN 60715) | |
| Mounting position | | any | |
| Minimum distance to other units \quad. \quad horizontal / vertical | | no/no | |
| | | IP50/IP20 | |
| Electrical connection | | | |
| Wire size | fine-strand with wire end ferrule | $2 \times 0.75-1.5 \mathrm{~mm} 2$ ($2 \times 18-16$ AWG) | |
| | fine-strand without wire end ferrule | $2 \times 1-1.5 \mathrm{~mm} 2(2 \times 18-16$ AWG) | |
| | | $2 \times 0.75-1.5 \mathrm{~mm} 2(2 \times 18-16 \mathrm{AWG})$ | |
| | | 10 mm (0.39 in) | |
| Stripping length Tightening torque | | 0.6-0.8 Nm (5.31-7.08 lb.in) | |
| Environmental data | | | |
| Ambient temperature ranges | | $-20 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C}$ | |
| Damp heat | | 24 n cycle, $55^{\circ} \mathrm{C}, 93 \%$ rel., 96 h | |
| Operational reliability | | | |
| Mechanical resistance | | 10 g | |
| Isolation data | | | |
| Rated impulse withstand voltage $U_{\text {imp }}$ between all IEC/EN 60664isolated circuits | | 4 kV ; 1.2/50 $\mu \mathrm{s}$ | |
| Polliution category | | IIII/C | |
| Overvoltage category | | IIIIIC | |
| Rated insulation voltage U, between supply circuit, input circuit / output circuit control circuit and output circuit | | 300 V (supply up to 240 V) 500 V (supply up to 440 V) | |
| | | $2.5 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~s}$ | |
| Standards | | | |
| Product standard | | IEC 61812-1, EN 61812-1 + A11, DIN VDE 0435 Teil 2021 | |
| Low Voltage DirectiveEMC Directive | | 2006/95/EC | |
| | | 2004/108/EC | |
| Electromagnetic compatibility | | | |
| Interference immunity to | | IEC/EN 61000-6-2 | |
| | | Level $3(6 \mathrm{kV} / 8 \mathrm{kV})$ | |
| radiated, radio-frequency electromagIEC/EN 61000-4-3 netic field | | Level 3 ($10 \mathrm{~V} / \mathrm{m}$) | |
| electrical fast transient / burst | | Level 3 ($2 \mathrm{kV} / 5 \mathrm{kHz}$) | |
| surgeconducted disturbances, induced by radio-frequency fields | | Level 4 ($2 \mathrm{kV} \mathrm{L}-\mathrm{L}$) | |
| | | Level 3 (10 V) | |
| Interference emission | | IECC/EN 61000-6-4 | |

CT-E range

Wiring notes, Dimensional drawings

for single-function devices with control contact (CT-AHE, CT-AWE with auxiliary voltage)

O
0
0
0
0
N
N
N
0
0
N

2CDC 252201 F0b05

Dimensional drawing
Dimensions in mm

응
O
O
O
N
N
N
0
0
O

CT-E range

Notes

CT-S range
 Product group picture

CT-S range

Table of contents
CT-S Range
Product group picture 1/33
Table of contents 1/34
Benefits and advantages 1/35
Ordering details - multifunctional 1/37
Ordering details - singlefunctional 1/38
Ordering details - Accessories 1/39
Ordering details - Accessories 1/40
Function diagrams 1/41
Connection diagrams 1/49
Technical data 1/52
Technical diagrams 1/55
Wiring notes, Dimensional drawings 1/56

CT-S range
 Benefits and advantages

- Diversity:
- 8 multifunction timers
- 13 single-function timers
- 8 switching relays
- Control supply voltages:
- Multi range: 24-48 V DC, 24-240 V AC
- Wide range: 24-240 V AC/DC
- Single range: 380-440 V AC
- Innovative connection technology
- Double-chamber cage connection terminals
- Easy Connect Technology
- Devices with
- 1 or 2 c/o (SPDT) contacts
- 2nd c/o contact can be selected as instantaneous contact ${ }^{1)}$
- Remote potentiometer connection ${ }^{11}$
- Control input with volt-free or voltage-related triggering e.g. to start timing, pause timing
- Extended operating temperature range down to $-40^{\circ} \mathrm{C}{ }^{11}$
- Sealable transparent cover for protection against unauthorized changes of time values
- Integrated marker label
- Approvals / Marks (partly pending, details see page 1/4)

${ }^{1)}$ selected devices

Operating controls

1 2nd contact as an instantaneous contact
2 Preselection of the time range
3 Indication of operational states
U/T: \downarrow control supply voltage applied / $\square \square$ timing $R: \downharpoonleft$ Output relay energized
4 Fine adjustment of time delay
5 Preselection of timing function
6 Marker label

CT-S range

Benefits and advantages

Easy Connect Technology

(1)

Tool-free wiring and excellent vibration resistance. Push-in terminals provide connection of wires up to $2 \times 0,5-1,5 \mathrm{~mm}^{2}(2 \times 20-16$ AWG), rigid or fine-strand with or without wire end ferrules. The extended type designators for products with push-in terminals are indicated by a \mathbf{P} following the extended type designator e.g. CT-xxS.xxP.

Double-chamber cage connection terminals (2)

Double-chamber cage connection terminals provide connection of wires up to $2 \times 0,5-2,5 \mathrm{~mm}^{2}(2 \times 20-14 \mathrm{AWG})$ rigid or fine-strand, with or without wire end ferrules. Potential distribution does not require additional terminals. The extended type designators for products with double-chamber cage connection terminals are indicated by a \mathbf{S} following the extended type designator e.g. CT-xxS.xxS.

Time range preselection and fine adjustment (3)

Direct assignment of the preselected time range to the fine adjustment potentiometer scale by multicolor scales.

Higher utility class (4)
The Easy Connect Technology provides excellent vibration resistance with gas tight push-in terminals - the right solution for harsh environment. Selected products of the electronic timers and measuring and monitoring relays comply to the latest rail standards NF F 16-101/102, EN 45545, EN 50155 and more standards which are relevant for railway applications. Find more inforamtion in the rail brochure 2CDC110084B0201.

LEDs for status indication (5)
All actual operational states are displayed by front-face LEDs, thus simplifying commissioning and troubleshooting.

Integrated marker label (6)
Integrated marker labels allow the product to be marked quickly and simply. No additional marker labels are required.

Sealable transparent cover (7)
Protection against unauthorized changes of time and threshold values. Available as an accessory.

Snap-On housing (8)
Tool-free DIN rail installation and deinstallation of the electronic timer.

CT-S range

Ordering details - multifunctional

CT-MVS.21P

CT-MBS.22P
voltage
Impulse-ON
Impulse-OFF
Symmetrical ON-delay and
OFF-delay
Flasher starting with ON

Description

The highly sophisticated CT-S range in ABB's new S-range housing offers two different types of connection terminals and is ideally suited for universal use. Two different connection technologies are available:

- Double-chamber cage connection terminals
- Easy Connect Technology

Accessories:
The CT-S range offers the possibility of using accessories such as a remote potentiometer to adjust the time delay or a sealable, transparent cover to protect against unauthorized changes. of time and threshold values.

Timing function	Rated control supply voltage	Time ranges	Control input	Output	Type	Order code	Price 1 pce	Weight (1 pce) kg (lb)
Multifunctional ${ }^{5)}$	24-240	$\begin{aligned} & 10(0.05- \\ & 300 \mathrm{~h}) \end{aligned}$	\square	$2 \mathrm{c} / \mathrm{o}$	$\begin{aligned} & \text { CT-MVS. } 21 \text { S } \\ & \text { (1) } \end{aligned}$	1SVR730020R0200		$\begin{aligned} & 0.148 \\ & (0.326) \end{aligned}$
	V AC/DC				CT-MVS.21P 1) 2) 3)	1SVR740020R0200		$\begin{aligned} & 0.136 \\ & (0.30) \end{aligned}$
	$\begin{aligned} & 24-48 \vee D C, \\ & 24-240 \text { V AC } \end{aligned}$				CT-MVS.22S	1SVR730020R3300		$\begin{aligned} & 0.142 \\ & (0.313) \end{aligned}$
					CT-MVS.22P	1SVR740020R3300		$\begin{aligned} & 0.131 \\ & (0.289) \end{aligned}$
	380-440 V AC				CT-MVS.23S	1SVR730021R2300		$\begin{aligned} & 0.144 \\ & (0.317) \end{aligned}$
					CT-MVS.23P	1SVR740021R2300		$\begin{aligned} & 0.133 \\ & (0.293) \end{aligned}$
Multifunctional ${ }^{6)}$	$\begin{aligned} & 24-48 \vee D C, \\ & 24-240 \vee ~ A C \end{aligned}$	$\begin{aligned} & 10(0.05 \mathrm{~s} \\ & -300 \mathrm{~h}) \end{aligned}$	\square	$1 \mathrm{c} / \mathrm{o}$	CT-MVS.12S	1SVR730020R3100		$\begin{aligned} & 0.107 \\ & (0.236) \end{aligned}$
					CT-MVS.12P	1SVR740020R3100		$\begin{aligned} & 0.102 \\ & (0.225) \end{aligned}$
Multifunctional ${ }^{75}$	$\begin{aligned} & 24-48 \vee D C, \\ & 24-240 \vee A C \end{aligned}$	$\begin{aligned} & 2 \times 10 \\ & (0.05 \mathrm{~s}- \\ & 300 \mathrm{~h}) \end{aligned}$	\square	$2 \mathrm{c} / \mathrm{o}$	CT- MXS.22S4)	1SVR730030R3300		$\begin{aligned} & 0.142 \\ & (0.313) \end{aligned}$
					CT-MXS.22P4)	1SVR740030R3300		$\begin{aligned} & 0.131 \\ & (0.289) \end{aligned}$
Multifunctional ${ }^{8)}$	$\begin{aligned} & 24-240 \\ & \text { V AC/DC } \end{aligned}$	$\begin{aligned} & 10 \\ & (0.05 \mathrm{~s} \mathrm{-} \\ & 300 \mathrm{~h}) \end{aligned}$	-	$2 \mathrm{c} / \mathrm{o}$	CT-MFS.21S 1) 2) 3)	1SVR730010R0200		$\begin{aligned} & 0.145 \\ & (0.32) \end{aligned}$
					CT-MFS.21P 1) 2) 3)	1SVR740010R0200		$\begin{aligned} & 0.133 \\ & (0.293) \end{aligned}$
	$\begin{aligned} & 24-48 \vee D C, \\ & 24-240 \vee \mathrm{AC} \end{aligned}$	$\begin{aligned} & 10 \\ & (0.05 \mathrm{~s} \mathrm{-} \\ & 300 \mathrm{~h}) \end{aligned}$	\square / \square	$2 \mathrm{c} / \mathrm{o}$	$\underset{\text { 2) } 3 \text { 3 }}{\text { CT-MBS. } 22 \mathrm{~S}}$	1SVR730010R3200		$\begin{aligned} & 0.14 \\ & (0.309) \end{aligned}$
					$\begin{aligned} & \text { 2) 3) } \\ & \text { CT-MBS. } 22 \mathrm{P} \end{aligned}$	1SVR740010R3200		$\begin{aligned} & 0.129 \\ & (0.284) \end{aligned}$
Multifunctional ${ }^{9}$	$\begin{aligned} & 24-48 \vee \mathrm{DC}, \\ & 24-240 \vee \mathrm{AC} \end{aligned}$	$\begin{aligned} & 10(0.05 \mathrm{~s} \\ & -300 \mathrm{~h}) \end{aligned}$	-	$2 \mathrm{c} / \mathrm{o}$	CT-WBS.22S	1SVR730040R3300		$\begin{aligned} & 0.123 \\ & (0.271) \end{aligned}$
					CT-WBS.22P	1SVR740040R3300		$\begin{aligned} & 0.115 \\ & (0.254) \end{aligned}$
1) Extended temperature range $-40^{\circ} \mathrm{C}$					\square Control input with voltage-related triggering \square Control input with volt-free triggering \square / \square two control input with volt-free triggering - no triggering			
${ }^{\text {2) }}$ R Remote potentiometer connection					S: screw connection			

4) 2 remote potentiometer connections
${ }^{5)}$ Functions: ON-delay, OFF-delay with auxiliary voltage, Impulse-ON, Impulse-OFF with auxiliary voltage, Symmetrical ON- and OFF- delay, Flasher starting with ON or OFF, Star-delta change-over with impulse, Pulse former, Accumulative ON-delay, ON/OFF-function ${ }^{6)}$ Functions: ON-delay, OFF-delay with auxiliary voltage, Impulse-ON, Impulse-OFF with auxiliary voltage, Symmetrical ON- and OFFdelay, Flasher starting with ON or OFF, Pulse former, Accumulative ON-delay, ON/OFF-function
${ }^{\text {¹ }}$) Functions: Select function via DIP switches behind the marker label on the front of the unit, asymmetrical ON- and OFF-delay, Impulse-ON/OFF, Pulse generator starting with ON or OFF, Single pulse generator, ON/OFF-function
${ }^{\text {3) }}$ Functions: ON-delay, OFF-delay with auxiliary voltage, Impulse-ON, Impulse-OFF with auxiliary voltage, Symmetrical ON- and OFFdelay, Flasher starting with ON, Flasher starting with OFF, Star-delta change-over with impulse, Pulse former, ON/OFF-function ${ }^{9}$) Functions: Flasher starting with ON, Flasher starting with OFF, Impulse-ON, ON-delay, fixed impulse with adjustable time delay, Adjustable impulse with fixed time delay, ON/OFF-function

CT-S range

Ordering details - singlefunctional

CT-S range

Ordering details - Accessories

MT-x50B

30 mm adapters

Marker label $29.6 \times 44.5 \mathrm{~mm}$

Marker label with scale 0-30 $48.5 \times 44.5 \mathrm{~mm}$

2CDC 252042 F0009

2CDC 252043 FO20
Note: Technical specifications see data sheet

30 mm adapter for attaching the potentiometer 22 mm in 30 mm mounting hole

Material	Type	Order code	Price 1 piece	Pack.unit pieces	Weight 1 piece g / oz
Plastic, black	KA1-8029	1SFA616920R8029		1	
Metal, chrome	KA1-8030	1SFA616920R8030		1	

Remote potentiometer
$50 \mathrm{k} \Omega \pm 20 \%-0,2 \Omega$, degree of protection IP66

Material	Diameter in mm	Type	Order code	Price 1 piece	Pack.unit pieces	Weight 1 piece g / oz
Plastic, black	22.5	MT-150B	1SFA611410R1506		1	0.040
Plastic, chrome	22.5	MT-250B	1SFA611410R2506		1	0.040
Metal, chrome	22.5	MT-350B	1SFA611410R3506		1	0.048
	$15-8$	me relay		Potentiomete \square Note: The con are not	tions of the p ked.	0 0 0 0 o 0 0 0 0 0 0 0 tentiometer

Marker label

Caption	Type	Order code	Price 1 piece	Pack.unit pieces	Weight 1 piece g/oz
Symbol (see illustration)	SK 615 562-87	GJD6155620R0087		1	0.002
Scale 0-10	SK 615 562-88	GJD6155620R0088		1	0.002
Scale 0-30	MA16-1060	1SFA611940R1060		1	0.002

CT-S range

Ordering details - Accessories

ADP. 01

COV. 01

MAR. 01

COV. 11

MAR. 02

Accessories for CT-S in new housing (1SVR7...)
$\left.\begin{array}{l:c:c:c:c}\hline \text { Description } & \text { Type } & \text { Order code } & \text { Price } & \begin{array}{l}\text { Pack.- } \\ \text { unit }\end{array} \\ \hline \text { Weight } \\ \text { 1 piece }\end{array}\right]$

Accessories for CT-S in old housing (1SVR4...)

Description	Type	Order code	Price 1 piece	Pack.unit pieces	Weight 1 piece kg / lb
Adapter for screw mounting	ADP. 01	1SVR430029R0100		1	$\begin{aligned} & 0.018 \\ & (0.040) \end{aligned}$
Sealable transparent cover	COV. 01	1SVR430005R0100		1	$\begin{aligned} & 0.004 \\ & (0.009) \end{aligned}$
Marker label for devices w/o DIP switches	MAR. 01	1SVR366017R0100		10	$\begin{aligned} & 0.001 \\ & (0.002) \end{aligned}$
Marker label for devices with DIP switches	MAR. 02	1SVR430043R0000		10	$\begin{aligned} & 0.001 \\ & (0.002) \end{aligned}$

CT-S range
 Function diagrams

Remarks

Legend
\square
Control supply voltage not applied / Output contact open Control supply voltage applied / Output contact closed

A1-Y1/B1 Control input with voltage-related triggering
Y1-Z2 Control input with volt-free triggering
X1-Z2 Control input with volt-free triggering

Remote potentiometer connection:
When an external potentiometer is connected to the remote potentiometer connection (terminals Z1-Z2, Z3-Z2 respectively), the internal, front-face potentiometer is disabled and the time adjustment is made via the external potentiometer.

2nd c/o contact selectable as instantaneous contact:
When switch position Inst. "l" is selected, the functionality of the 2nd c/o contact changes to an instantaneous contact. It acts like the c/o contacts of a switching relay, i.e. applying or interrupting the control supply voltage energizes or de-energizes the c/o contact. The designation of the 2nd c/o contact changes from 25-26/28 to 21-22/24, when selected as instantaneous contact.

Terminal designations on the device and in the diagrams:
The 1st c/o contact is always designated 15-16/18.
The 2nd c/o contact is designated $\mathbf{2 5 - 2 6 / 2 8}$, if it responds to the time delay.
If the 2 nd c/o contact is selected as an instantaneous contact, the designation 25-26/28 is replaced by 21-22/24 .
Control supply voltage is always applied to terminals A1-A2.

Function of the yellow LEDs:
On devices without the function '2nd c/o contact selectable as instantaneous contact', the yellow LED R glows as soon as the output relay energizes and turns off when the output relay de-energizes.

Devices with the function '2nd c/o contact selectable as instantaneous contact' have two yellow LEDs, designated R1 and R2. LED R1 shows the status of the 1st c/o contact (15-16/18) and LED R2 shows the status of the 2 nd c/o contact (25-26/28, 21-22/24 resp.). LED R1 or R2 glow as soon as the corresponding output relay energizes and turns off when the corresponding output relay de-energizes.

$\boxtimes \quad$ ON-delay
 (Delay on make)
 CT-MFS, CT-MBS

This function requires continuous control supply voltage for timing. If control input $\mathrm{Y} 1-\mathrm{Z} 2$ is open, timing begins when control supply voltage is applied. Or, if control supply voltage is already applied, opening control input Y1-Z2 also starts timing. The green LED flashes during timing. When the selected time delay is complete, the output relay energizes and the flashing green LED turns steady.
If control input Y1-Z2 closes before the time delay is complete, the time delay is reset and the output relay remains de-energized.
Pause timing / Accumulative ON-delay (CT-MFS):
Timing can be paused by closing control input $\mathbf{X 1} \mathbf{- Z 2}$. The elapsed time t_{1} is stored and continues from this time value when $\mathbf{X 1} \mathbf{- Z 2}$ is re-opened. This can be repeated as often as required.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

CT-S range
 Function diagrams

$\triangle+\quad$ Accumulative ON-delay
 (Accumulative delay on make)
 CT-MVS

This function requires continuous control supply voltage for timing. Timing begins when control supply voltage is applied. The green LED flashes during timing. When the selected time delay is complete, the output relay energizes and the flashing green LED turns steady.
Timing can be paused by closing control input A1-Y1/B1. The elapsed time t_{1} is stored and continues from this time value when $\mathrm{A} 1-\mathrm{Y} 1 / \mathrm{B} 1$ is re-opened.
This can be repeated as often as required.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

OFF-delay with auxiliary voltage
(Delay on break)
CT-MVS, CT-APS
This function requires continuous control supply voltage for timing. If control input A1-Y1/B1 is closed, the output relay energizes immediately. If control input A1-Y1/B1 is opened, the time delay starts. The green LED flashes during timing. When the selected time delay is complete, the output relay de-energizes and the flashing green LED turns steady.
If control input $\mathbf{A 1}-\mathrm{Y} 1 / \mathrm{B} 1$ recloses before the time delay is complete, the time delay is reset and the output relay does not change state. Timing starts again when control input A1-Y1/B1 re-opens.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

OFF-delay with auxiliary voltage
(Delay on break)
CT-MFS, CT-MBS, CT-AHS
This function requires continuous control supply voltage for timing. If control input Y1-Z2 is closed, the output relay energizes immediately. If control input Y1-Z2 is opened, the time delay starts. The green LED flashes during timing. When the selected time delay is complete, the output relay de- energizes and the flashing green LED turns steady.
If control input Y1-Z2 closes before the time delay is complete, the time delay is reset and the output relay does not change state. Timing starts again when control input Y1-Z2 re-opens.
Pause timing / Accumulative OFF-delay (CT-MFS):
Timing can be paused by closing control input X1-Z2. The elapsed time t_{1} is stored and continues from this time value when $\mathbf{X 1} \mathbf{- Z 2}$ is re-opened.
This can be repeated as often as required.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

OFF-delay without auxiliary voltage
 (True delay on break)

CT-ARS
The OFF-delay function without auxiliary voltage does not require continuous control supply voltage for timing. After a storage time of several months without any voltage, a formatting time of about 5 minutes is necessary.
Applying control supply voltage energizes the output relay immediately. Applied control supply voltage is displayed by the glowing green LED. If control supply voltage is interrupted, the OFF-delay starts and the LED turns off. When timing is complete, the output relay de-energizes.
For correct operation of the unit, it is necessary to complete the minimum energizing time. As soon as timing starts, the LED turns off.

CT-S range
 Function diagrams

The DC contactor coil connected to the output is energized when control supply voltage is applied.
If control supply voltage is disconnected, the DC contactor coil remains energized for a short time delay. This time delay depends on the coil drop-out voltage and on the wattage of the contactor coil.

$\mathrm{t}_{1}=$ OFF-delay (without jumper between terminals 3 and $4{ }^{11}$)
$\mathrm{t}_{2}=$ OFF-delay (with jumper between terminals 3 and 41)

1) only for version $200-240$ V AC

Time delay guideline values 200-240 V AC version without jumper 3/4

Time delay guideline values 200-240 V AC version with jumper 3/4

Time delay guideline values
110-127 V AC version

Symmetrical ON-delay and OFF-delay (Symmetrical delay on make and delay on break) CT-MFS, CT-MBS
This function requires continuous control supply voltage for timing.
Closing control input $\mathrm{Y} 1-\mathrm{Z} 2$ starts the ON -delay t_{t}. When timing is complete, the output relay energizes. Opening control input Y1-Z2 starts the OFF-delay t_{2}. Both timing functions are displayed by the flashing green LED. When the OFF-delay t_{2} is complete, the output relay de-energizes. If control input Y1-Z2 opens before the ON -delay t , is complete, the time delay is reset and the output relay remains de-energized. If
control input Y1-Z2 closes before the OFF-delay t_{2} is complete, the time delay is reset and the output relay remains energized.
Pause timing / Accumulative, symmetrical ON-delay and OFF-delay (CTMFS): Timing can be paused by closing control input X1-Z2. The elapsed time $t_{1 a}$ or $t_{2 a}$ is stored and continues from this time value when $\mathrm{X} 1-\mathrm{Z2}$ is re-opened. This can be repeated as often as required.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

Symmetrical ON-delay and OFF-delay
(Symmetrical delay on make and delay on break)
CT-MVS (Symmetrical delay on make and delay on break)
CT-MVS CT-MVS
This function requires continuous control supply voltage for timing. Closing control input A1-Y1/B1 starts the ON-delay t_{1}. When timing is complete, the output relay energizes. Opening control input A1-Y1/ B 1 starts the OFF-delay t_{2}. Both timing functions are displayed by the flashing green LED. When the OFF-delay t_{2} is complete, the output relay de-energizes.
If control input A1-Y1/B1 opens before the ON-delay t_{1} is complete, the time delay is reset and the output relay remains de-energized. If control input A1-Y1/B1 closes before the OFF-delay t_{2} is complete, the time delay is reset and the output relay remains energized.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

CT-S range
 Function diagrams

Asymmetrical ON-delay and OFF-delay
(Asymmetrical delay on make and delay on break) CT-MXS
This function requires continuous control supply voltage for timing. Closing control input A1-Y1/B1 starts the ON-delay t_{1}. When timing is complete, the output relay energizes. Opening control input A1-Y1/B1 starts the OFF-delay t_{2}. When the OFF-delay is complete, the output relay de-energizes. Both timing functions are displayed by the flashing green LED. The ON-delay and OFF-delay are independently adjustable.
If control input A1-Y1/B1 opens before the ON-delay is complete $\left(<t_{1}\right)$, the time delay is reset and the output relay remains de-energized.
If control input A1-Y1/B1 closes before the OFF-delay is complete $\left(<t_{2}\right)$, the time delay is reset and the output relay remains energized.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

$1 \curvearrowleft \boxtimes$ Impulse-ON
(Interval)
CT-MFS, CT-MBS
This function requires continuous control supply voltage for timing. The output relay energizes immediately when control supply voltage is applied and de-energizes after the set pulse time is complete. If control input $\mathrm{Y} 1-\mathrm{Z} 2$ is open, timing begins when control supply voltage is applied. Or, if control supply voltage is already applied, opening control input Y1-Z2 starts timing. The green LED flashes during timing. When the selected pulse time is complete, the output relay de-energizes and the flashing green LED turns steady.
Closing control input Y1-Z2, before the pulse time is complete, deenergizes the output relay and resets the pulse time.
Pause timing / Accumulative impulse-ON (CT-MFS):
Timing can be paused by closing control input $\mathbf{X 1} \mathbf{- Z 2}$. The elapsed time t_{1} is stored and continues from this time value when $\mathbf{X 1} \mathbf{- Z 2}$ is re-opened. This can be repeated as often as required.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

1几囚

Impulse-ON
(Interval)
CT-MVS, CT-WBS
This function requires continuous control supply voltage for timing. The output relay energizes immediately when control supply voltage is applied and de-energizes after the set pulse time is complete. The green LED flashes during timing. When the selected pulse time is complete, the flashing green LED turns steady.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

1mpulse-OFF with auxiliary voltage
(Trailing edge interval)
CT-MFS, CT-MBS
This function requires continuous control supply voltage for timing. If control supply voltage is applied, opening control input Y1-Z2 energizes the output relay immediately and starts timing. The green LED flashes during timing. When the selected pulse time is complete, the output relay de-energizes and the flashing green LED turns steady. Closing control input Y1-Z2, before the pulse time is complete, deenergizes the output relay and resets the pulse time.
Pause timing / Accumulative impulse-OFF (CT-MFS):
Timing can be paused by closing control input X1-Z2. The elapsed time t_{1} is stored and continues from this time value when $\mathbf{X 1 - Z 2}$ is re-opened. This can be repeated as often as required.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

CT-S range
 Function diagrams

Impulse-OFF with auxiliary voltage (Trailing edge interval) CT-MVS
This function requires continuous control supply voltage for timing. If control supply voltage is applied, opening control input A1-Y1/B1 energizes the output relay immediately and starts timing. The green LED flashes during timing. When the selected pulse time is complete, the output relay de-energizes and the flashing green LED turns steady.
Closing control input A1-Y1/B1, before the pulse time is complete, deenergizes the output relay and resets the pulse time.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

1ノ
Impulse-ON and impulse-OFF
(Interval and trailing edge interval) CT-MXS
This function requires continuous control supply voltage for timing. If control supply voltage is applied, closing control input A1-Y1/B1 energizes the output relay immediately and starts the pulse time t_{1}. The green LED flashes during timing. When t_{1} is complete, the output relay de-energizes and the flashing green LED turns steady.
Re-opening control input A1-Y1/B1 energizes the output relay immediately and starts the pulse time t_{2}. The green LED flashes during timing. When t_{2} is complete, the output relay de-energizes and the flashing green LED turns steady. t_{1} and t_{2} are independently adjustable.
If control input $\mathbf{A 1}$-Y1/B1 changes state before the pulse time is complete, the output relay de-energizes and the pulse time is reset. If control input A1-Y1/B1 changes state again, the interrupted pulse time restarts.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

$\curvearrowleft \square$
Flasher, starting with the OFF time
(Recycling equal times, OFF first) CT-WBS
Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an OFF time first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

Flasher with reset, starting with the OFF time (Recycling equal times with reset, OFF first) CT-MFS, CT-MBS
Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an OFF time first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time.
The time delay can be reset by closing control input Y1-Z2. Opening control input Y1-Z2 starts the timer pulsing again with symmetrical ON \& OFF times.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

CT-S range

Function diagrams

Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an ON time first.
Closing control input A1-Y1/B1, with control supply voltage applied, starts the cycle with an OFF time first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

1π

Pulse former
(Single shot)
CT-MVS
This function requires continuous control supply voltage for timing. Closing control input A1-Y1/B1 energizes the output relay immediately and starts timing. Operating the control contact switch A1-Y1/B1 during the time delay has no effect. The green LED flashes during timing. When the selected ON time is complete, the output relay de-energizes and the flashing green LED turns steady. After the ON time is complete, it can be restarted by closing control input A1-Y1/B1.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

冗

Pulse generator, starting with the ON or OFF time (Recycling unequal times, ON or OFF first) CT-MXS

This function requires continuous control supply voltage for timing. Applying control supply voltage, with open control input A1-Y1/B1, starts timing with an ON time t_{2} first. Applying control supply voltage, with closed control input A1-Y1/B1, starts timing with an OFF time t_{1} first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time.
The ON \& OFF times are independently adjustable.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

CT-S range
 Function diagrams

- Single-pulse generator, starting with the OFF time (Delay on make with interval output) CT-MXS

This function requires continuous control supply voltage for timing. Applying control supply voltage, or, if control supply voltage is already applied, opening control input A1-Y1/B1 energizes the output relay after the OFF time t_{1} is complete. When the following ON time t_{2} is complete, the output relay de-energizes. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time. The ON \& OFF times are independently adjustable.
Closing control input A1-Y1/B1, with control supply voltage applied, deenergizes the output relay and resets the time delay.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

1』 Adjustable impulse with fixed time delay (Delayed Interval) CT-WBS

This function requires continuous control supply voltage for timing. Applying control supply voltage starts the fixed time delay t_{2} of 500 ms . When t_{2} is complete, the output relay energizes and the selected pulse time t_{1} starts. The green LED flashes during timing. When t_{1} is complete, the output relay de-energizes and the flashing green LED turns steady.
If control supply voltage is interrupted, the pulse time is reset. The output relay does not change state.

$\triangle 1 \Omega \quad$ Fixed impulse with adjustable time delay (Delayed pulse output) CT-WBS
This function requires continuous control supply voltage for timing.
The time delay t_{1} starts when control supply voltage is applied. The green LED flashes during timing. When t_{1} is complete, the output relay energizes for the fixed impulse time t_{2} of 500 ms and the flashing green LED turns steady.
If control supply voltage is interrupted, the time delay is reset. The output relay does not change state.

\square

ON/OFF-Function
 CT-MFS, CT-MBS, CT-MVS, CT-MXS, CT-WBS

This function is used for test purposes during commissioning and troubleshooting.
If the selected max. value of the time range is smaller than 300 h (frontface potentiometer "Time sector" $=300 \mathrm{~h}$), applying control supply voltage energizes the output relay immediately and the green LED glows. Interrupting control supply voltage, de-energizes the output relay.
If the selected max. value of the time range is 300 h (front-face potentiometer "Time sector" = 300 h) and control supply voltage is applied, the green LED glows, but the output relay does not energize
Time settings and operating of the control inputs have no effect on the operation.

Switching relays
CT-IRS
The switching relay may be used to increase the number of available contacts or to reinforce contacts, or as a coupling/decoupling interface. Approx. 10 ms after applying control supply voltage to terminals A1-A2, the output relay energizes.
If control supply voltage is interrupted, the output relay de-energizes

CT-S range

Function diagrams

$\Delta 1 \Omega$
Star-delta change-over with impulse function
(Star-delta starting, interval/delay on make)
CT-MFS, CT-MBS, CT-MVS. $2 x$
This function requires continuous control supply voltage for timing. Applying control supply voltage to terminals A1-A2, energizes the star contactor connected to terminals 15-18 and begins the set starting time t_{1}. The green LED flashes during timing. When the starting time is complete, the first c/o contact de-energizes the star contactor.
Now, the fixed transition time t_{2} of 50 ms starts. When the transition time is complete, the second c/o contact energizes the delta contactor connected to terminals 25-28. The delta contactor remains energized as long as control supply voltage is applied to the unit.

\triangle Star-delta change-over
(Star-delta starting) CT-SDS
This function requires continuous control supply voltage for timing. Applying control supply voltage to terminals A1-A2, energizes the star contactor connected to terminals 17-18 and begins the set starting time t_{1}. The green LED flashes during timing. When the starting time is complete, the first output contact de-energizes the star contactor.
Now, the fixed transition time t_{2} of 50 ms starts. When the transition time is complete, the second output contact energizes the delta contactor connected to terminals 17-28. The delta contactor remains energized as long as control supply voltage is applied to the unit.

Power circuit diagram

CT-S range

Connection diagrams

1

CT-MVS. 21		
A1	15	2521 \%
Y1/B1	Z2	Z1
2824	2622	
18	16	A2
A1-A2	Supply:$24-240 \vee \mathrm{AC} / \mathrm{DC}$	
15-16/18	1. c/o contact	
25-26/28	2. c/o contact	
21-22/24	2. c/o contact as instantaneous contact	
A1-Y1/B1	Control input	
Z1-Z2	Remote potentiometer connection	

CT-MVS. 22

$\begin{array}{ll}\text { A1-A2 } & \text { Supply: } \\ & 24-48 \mathrm{~V} \text { DC or } \\ & 24-240 \mathrm{VAC} \\ 15-16 / 18 & \text { 1. c/o contact }\end{array}$
25-26/28 2. c/o contact

A1-Y1/B1 Control input

CT-MVS. 23

A1-A2 Supply:
$380-440$ V AC

15-16/18 1. c/o contact
25-26/28 \quad 2. c/o contact

A1-Y1/B1 Control input

A1-A2 Supply
24-48 V DC o
24-240 V AC
15-16/18 1. c/o contact

A1-Y1/B1 Control input

CT-MXS. 22

A1-A2	Supply: $24-48 \mathrm{~V}$ DC or $24-240 \mathrm{~V} \mathrm{AC}$
	15-16/18
1. c/o contact	
$25-26 / 28$	2. c/o contact
A1-Y1/B1	Control input
Z1-Z2	Remote potentiometer connection
Z3-Z2	Remote potentiometer connection

CT-MFS. 21

$\begin{array}{ll}\text { A1-A2 } & \text { Supply: } \\ & 24-240 \vee \mathrm{AC} / D C\end{array}$
15-16/18 1. c/o contact
25-26/28 2. c/o contact
21-22/24 2. c/o contact as instantaneous contact
Control input
Control input
Remote potentiometer connection

CT-MBS. 22

$\begin{array}{ll}\text { A1-A2 } & \text { Supply: } \\ & 24-48 \mathrm{VC} \text { or } \\ & 24-240 \mathrm{~V} \text { AC }\end{array}$
15-16/18 1. c/o contact
25-26/28 2. c/o contact
21-22/24 2. c/o contact as instantaneous contact Control input Remote potentiometer connection

CT-WBS. 22

2CDC 252008 F0b06

A1-A2 Supply:
24-48 V DC or
24-240 V AC
15-16/18 1. c/o contact
25-26/28 2. c/o contact
\triangle CT-ERS. 21

A1	15	25
28	26	
18	16	A2

$\begin{array}{ll}\text { A1-A2 } & \text { Supply: } \\ & 24-240 \text { V AC/DC } \\ & \\ \text { 15-16/18 } & \text { 1. c/o contact } \\ \text { 25-26/28 } & \text { 2. c/o contact }\end{array}$
\boxtimes CT-ERS. 22

$\begin{array}{ll}\text { A1-A2 } & \begin{array}{l}\text { Supply: } \\ \\ \\ 24-48 \text { V DC or } \\ 24-240 \text { V AC }\end{array} \\ 15-16 / 18 & \text { 1. c/o contact } \\ 25-26 / 28 & \text { 2. c/o contact }\end{array}$
\boxtimes CT-ERS. 12

A1-A2 Supply:
24-48 V DC or
24-240 V AC
15-16/18 1. c/o contact

CT－S range
 Connection diagrams

A1－A2	Supply： $24-240 ~ V ~ A C / D C ~$
15－16／18	1．c／o contact
$25-26 / 28$	2．c／o contact
A1－Y1／B1	Control input

A1－A2	Supply：
	$24-48$ V DC or
	$24-240 \mathrm{~V} \mathrm{AC}$
$15-16 / 18$	1．c／o contact
$25-26 / 28$	2．c／o contact
A1－Y1／B1	Control input

CT－APS． 12

A1－A2	Supply：
	24－48 V DC or
	24－240 V AC
15－16／18	1．c／o contact
A1－Y1／B1	Control input

CT－AHS． 22

A1－A2	Supply：
	24－48 V DC or
	24－240 V AC
15－16／18	1．c／o contact
25－26／28	2．c／o contact
Y1－Z2	Control input

CT－VBS． 17

CT－VBS． 18

\triangle CT－SDS． 22

$\begin{array}{ll}\text { A1－A2 } & \begin{array}{l}\text { Supply：} \\ 24-48 ~ V ~ D C ~ o r ~\end{array} \\ & \begin{array}{l}24-240 \vee \text { AC }\end{array} \\ 17-18 & \text { 1．n／o contact } \\ 17-28 & 2 . \text { n／o contact }\end{array}$
\triangle CT－SDS． 23

9090」910 乙૬己 Оロכ乙

CT－S range
 Connection diagrams

1

A1－A2	Supply： 24 AC／DC
$11-12 / 14$	1．c／o contact

\square CT－IRS． 26

$\begin{array}{ll}\text { A1－A2 } & \begin{array}{l}\text { Supply：} \\ 24 \text { AC／DC }\end{array} \\ & \\ \text { 11－12／14 } & \text { 1．c／o contact } \\ 21-22 / 24 & \text { 2．c／o contact }\end{array}$

$\begin{array}{ll}\text { A1－A2 } & \begin{array}{l}\text { Supply：} \\ \\ 24 \text { AC／DC }\end{array} \\ & \\ 11-12 / 14 & \text { 1．c／o contact }\end{array}$

$\begin{array}{ll}\text { A1－A2 } & \begin{array}{l}\text { Supply：} \\ \\ 110-240 ~ V ~ A C ~\end{array} \\ & \\ \text { 11－12／14 } & \text { 1．c／o contact }\end{array}$

A1－A2	Supply： 24 V AC／DC
11－12／14	1．c／o contact
$21-22 / 24$	2．c／o contact
31－32／34	3．c／o contact

$\begin{array}{ll}\text { A1－A2 } & \begin{array}{l}\text { Supply：} \\ \text { 24 V AC／DC }\end{array} \\ & \\ \text { 11－12／14 } & \text { 1．c／o contact } \\ 21-22 / 24 & \text { 2．c／o contact } \\ 31-32 / 34 & \text { 3．c／o contact }\end{array}$
\square CT－IRS． 35
O
O
L
N
O
N
N
O
N

A1－A2	Supply： $220-240 ~ V ~ A C ~$
$11-12 / 14$	1．c／o contact
$21-22 / 24$	2．c／o contact
$31-32 / 34$	3．c／o contact

31－32／34 3．c／o contact

$\begin{aligned} & \text { 几0 } \\ & \text { O } \end{aligned}$	\square CT－IRS． 24		
	A1		
	14	11	12
$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \\ & \text { O} \\ & \text { N } \end{aligned}$			
	24	22	
		21	A2
	A1－A2	Supply：$110-240 \mathrm{~V} \mathrm{AC}$	
	11－12／14		contact
	21－22／24		contact

\square CT－IRS． 24

21－22／24 2．c／o contact

CT-S range

Technical data

Data at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and rated values, unless otherwise indicated

[^3]
CT-S range
 Technical data

Control supply voltage / timing U/T: green LED			
Control supply voltage		Γ : control supply voltage applied	
Relay state	R, R1, R2: yellow LED	$\sqrt{\text { l }}$: output relay energized	
Output circuit			
Kind of output	15-16/18	relay, $1 \mathrm{c} / \mathrm{o}$ contact	
	15-16/18; 25-26/28	relay, 2 c/o contacts	
	15-16/18; 25(21)-26(22)/28(24)	relay, $2 \mathrm{c} / \mathrm{o}$ contacts, 2 nd c/o contact selectable as inst. contact	
	17-18; 17-28	relay, $2 \mathrm{n} / \mathrm{o}$ contacts (CT-SDS)	
Contact material		Cd-free, on request	
Rated operational voltage U_{e}.		250 V	
Minimum switching voltage / minimum switching current		$12 \mathrm{~V} / 10 \mathrm{~mA}$ (CT-IRS. $2 \times \mathrm{G}: 10 \mathrm{mV} / 10 \mu \mathrm{~A})$	
Maximum switching voltage / maximum switching current		see load limit curves (CT-IRS. $2 \times \mathrm{G}$: $10 \mathrm{~V} / 200 \mathrm{~mA}$)	
Rated operational current I I (IEC/EN 60947-5-1)	AC12 (resistive) at 230 V	4 A	
	AC15 (inductive) at 230 V	3 A	
	DC12 (resistive) at 24 V	4 A	
	DC13 (inductive) at 24 V	2 A (CT-ARS; 1.5 A)	
AC rating (UL 508)	UUtilization category (Control Circuit Rating Code)	B 300	
	max. rated operational voltage	300 V AC	
	Maximum continuous thermal current at B300	5 A	
	max. making/breaking apparent power at B300	3600 VA / 360 VA	
Mechanical lifetime		30×10^{6} switching cycles	
Electrical lifetime at AC12, $230 \mathrm{~V}, 4 \mathrm{~A}$		0.1×10^{6} switching cycles	
Max. fuse rating to achieve short-circuit protection \quad n/c contact(IEC/EN 60947-5-1)		6 A fast-acting	
		10 A fast-acting	
General data ${ }^{\text {2) }}$			
MTBF		on request	
Duty time		100\%	
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	product dimensions	$22.5 \times 85.6 \times 103.7 \mathrm{~mm}(0.89 \times 3.37 \times 4.08 \mathrm{in})$	
		$97 \times 109 \times 30 \mathrm{~mm}(3.82 \times 4.29 \times 1.18 \mathrm{in})$	
Weight		depending on device, see ordering details	
Mounting		DIN rail (IEC/EN 60715), snap-on mounting without any tool	
Mounting position		any	
Minimum distance to other units		not necessary / not necessary	
Material of housing		ÜL 94 V-0	
Degree of protection		IP50 / IP20	
Electrical connection ${ }^{2)}$			
Wire size		Screw connection technology	Easy Connect Technology (Push-in)
	fine-strand with(out) wire end ferrule	$\begin{aligned} & 1 \times 0.5-2.5 \mathrm{~mm}^{2}(1 \times 20-14 \mathrm{AWG}) \\ & 2 \times 0.5-1.5 \mathrm{~mm}^{2}(2 \times 20-16 \text { AWG } \end{aligned}$	$2 \times 0.5-1.5 \mathrm{~mm}^{2}(2 \times 20-16$ AWG $)$
	rigid	$\begin{aligned} & 1 \times 0.5-4 \mathrm{~mm}^{2}(1 \times 20-12 \mathrm{AWG}) \\ & 2 \times 0.5-2.5 \mathrm{~mm}^{2}(2 \times 20-14 \mathrm{AWG}) \end{aligned}$	$2 \times 0.5-1.5 \mathrm{~mm}^{2}(2 \times 20-16 \mathrm{AWG})$
Stripping length		8 mm (0.32 in)	
Tightening torque		0.6-0.8 Nm (5.31-7.08 lb.in)	-

[^4]
CT-S range

Technical data

Environmental data		
Ambient temperature ranges	operation / storage	$\begin{aligned} & -25 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C}, \\ & -40 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C}(\mathrm{CT}-\mathrm{MVS.21,} \end{aligned}$ CT-MFS.21, CT-ERS.21, CT-APS.21)
Damp heat (cyclic) (IEC/EN 60068-2-30)		$6 \times 24 \mathrm{~h} \mathrm{cycle}, 55^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$
Vibration, sinusoidal (IEC/EN 60068-2-6)	functioning	$40 \mathrm{~m} / \mathrm{s}^{2}, 10-58 / 60-150 \mathrm{~Hz}$
	resistance	$60 \mathrm{~m} / \mathrm{s}^{2}, 10-58 / 60-150 \mathrm{~Hz}, 20$ cycles
Vibration, seismic (IEC/EN 60068-3-3)	functioning	$20 \mathrm{~m} / \mathrm{s}^{2}$
Shock, half-sine (IEC/EN 60068-2-27)	functioning	$100 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}, 3$ shocks/direction
	resistance	$300 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}, 3$ shocks/direction
Isolation data		
Rated insulation voltage U_{i}	input circuit / output circuit	500 V
	output circuit 1/output circuit 2	300 V
Rated impulse withstand voltage $U_{\text {imp }}$ between all isolated circuits	VDE 0110, IEC/EN 60664	4 kV ; 1.2/50 Hs
Power-frequency withstand voltage test between all isolated circuits (test voltage)	routine test	$2.0 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~s}$
	type test	$2.5 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$
Basic insulation (IEC/EN 61140)	input circuit / output circuit	500 V
Protective separation (IEC/EN 61140; EN 50178)	input circuit / output circuit	250 V
Poilution degree (IEC/EN 60664-1)		3
Overvoltage category (IEC/EN 60664-1)		iiii
Standards		
Product standard		IEC 61812-1, EN 61812-1 + A11, DIN VDE 0435 part 2021
Low Voltage Directive		2006/95/EC
EMC Directive		2004/108/EC
RoHS Directive		2002/95/EC
Electromagnetic compatibility		
Interference immunity to		IEC/EN 61000-6-1, IEC/EN 61000-6-2
electrostatic discharge	IEC/EN 61000-4-2	Level $3,6 \mathrm{kV} / 8 \mathrm{kV}$
radiated, radio-frequency electromagnetic field	IEC/EN 61000-4-3	Level 3, $10 \mathrm{~V} / \mathrm{m}(1 \mathrm{GHz}) 3 \mathrm{~V} / \mathrm{m}(2 \mathrm{GHz}) 1 \mathrm{~V} / \mathrm{m}(2.7 \mathrm{GHz})$
electrical fast transient / burst	IEC/EN 61000-4-4	Level $3,2 \mathrm{kV} / 5 \mathrm{kHz}$
surge	IEC/EN 61000-4-5	Level 4, 2 kV A1-A2
conducted disturbances, induced by radiofrequency fields	IEC/EN 61000-4-6	Level 3, 10 V
harmonics and interharmonics	IEC/EN 61000-4-13	Class 3
Interference emission		İEC/EN 61000-6-3, IEC/EN 61000-6-4
high-frequency radiated	IEC/CISPR 22, EN 55022	Class B
high-frequency conducted	IEC/CISPR 22, EN 55022	Class B

„Approvals and marks" see page 1/4.

CT-S range
 Technical diagrams

Technical diagrams
Load limit curves
AC load (resistive)

Derating factor F
for inductive AC load

DC load (resistive)

Contact lifetime

CT-S range

Wiring notes, Dimensional drawings

Wiring notes

Control inputs
 (volt-free triggering)

Triggering of the control inputs (volt-free) with a proximity switch (3 wire)

Control inputs
(voltage-related triggering)

The control input Y1/B1 is triggered with electric potential against A2. It is possible to use the control supply voltage from terminal A1 or any other voltage within the rated control supply voltage range.

Remote potentiometer

Dimensional drawing

1SVR 430 xxx xxx

Dimensions in mm and inches

[^0]: ${ }^{1)}$ Applicable in rail application following the latest standards for rail applications．Further information are available in our rail segment brochure 2CDC110084B0201．

[^1]: ${ }^{1)}$ Functions: ON-delay, OFF-delay with auxiliary voltage, Impulse-ON, Impulse-OFF with auxiliary voltage,
 Flasher starting with ON, Flasher starting with OFF, Pulse former
 ${ }^{2)}$ without auxiliary voltage, True Off-delay timer
 Control input with voltage-related triggering no triggering

[^2]: ${ }^{11}$ CT-MFE: yes / no

[^3]: ") prior to first commisioning and after a six-month stop in operation

[^4]: ${ }^{2}$ 2) Data for all references 1SVR $730 \mathrm{xxx} x \mathrm{xx}$ and 1SVR $740 \mathrm{xxx} x \mathrm{xx}$. For devices with 1SVR $430 \mathrm{xxx} x \mathrm{xx}$ please refer to the data sheet.

