Klippon ${ }^{\oplus}$ Relay

Reliable switching of power and signals

Relay modules for various applications

Rely on the right one

Electromechanical relay modules from Weidmüller

Introduction

When selecting a relay module, there is a risk of incorrect dimensioning of the loads or signals to be switched. This can lead to malfunction or premature loss of the relay module. This brochure is intended to help you select the appropriate relay for each load or signal you wish to switch.

Solutions for more productivity

Highly flexible design processes - with Klippon ${ }^{\oplus}$ Relay

For more than 40 years, we have specialised in the optimisation of cabinet infrastructures. Our wide range of relay modules, solid-state relays and additional value-added services combine the highest standards with ultimate quality. Less wiring effort, housing optimisation through space saving, optimal marking and cost reductions - our customers challenges are our motivation.

Our assortment impresses through reliability, longevity and safety. Supplemented by our digital data support, switching load consulting and online selection guides, we support our customers throughout the entire work process - from the planning phase to installation and operation

Switch to simple－with Klippon ${ }^{\circledR}$ Relay

High－quality relays with unique all－round service

Whether switching，separating，amplifying，or multiplying：relays perform a multitude of different tasks in industrial applications．They have very specific characteristics and are available in almost innumerable varieties on the market．

Klippon ${ }^{\circledR}$ Relay from Weidmüller makes your choice easy．Our worldwide unique all－round offer combines maximum relay variety with matching accessories and first－class service．We provide you with high－quality products that have been thought out down to the smallest detail，combined with comprehensive support from product selection to modern data services．Only with Klippon ${ }^{\oplus}$ Relay can you be sure to get the right relay for your specific needs－and save time and money
That＇s our promise！

[^0]
Switch to simple - with Klippon ${ }^{\circledR}$ Relay

High-quality relays with unique all-round service

Switch to secure selection - with Klippon ${ }^{\circledR}$ Relay
The comprehensive relay portfolio with the perfect support

However complex your application environment, the wide Klippon ${ }^{\circledR}$ relay portfolio offers robust and efficient relays for every imaginable application. To ensure you find exactly what you need from our large selection, we offer comprehensive support in choosing the right product. We support you in selecting accessories and provide tips for installation and maintenance. This saves a lot of time and ensures you that you always get the optimum product for your specific application. Quick, easy - and without selection errors!

Switch to reliable - with Klippon ${ }^{\circledR}$ Relay
Optimal relay selection for maximum plant availability

Is system availability your top priority? Then with our high quality Klippon ${ }^{\circledR}$ Relay portfolio you are on the safe side. We offer you comprehensive support to ensure you get the optimally dimensioned product for your application. With decades of experience in the relay segment, we choose the optimal products for you and ensure they are available wid une sesary machine and system damae, minimise avoid unnecessary downtimes, and ensure system availability.

Switch to efficient - with Klippon ${ }^{\circledR}$ Relay

Innovative relay solutions for fast and easy wiring

Time is money. Especially in switch cabinet production and plant engineering. Relay modules and solid-state relays from he Klippon ${ }^{\circledR}$ relay portfolio can be installed particularly easily, quickly, and conveniently. The innovative PUSH IN wiring due to coloured pushers. Our KITs, consisting of relays with status IED and sockets with retaining clips, offer you even more convenience. They are supplied fully assembled and functionally tested for time-saving installation and fast commissioning with shorter processing times.

Switch to maintainable - with Klippon ${ }^{\circledR}$ Relay
User-friendly relays for fast and error-free operation

Regardless of the application and environment, maintenance and repairs are unavoidable and must be carried out at educe the required effort. We have focused on many details that make everyday maintenance work faster and easier. These include optimum marking options, clear status LED, consistent product labelling, connection markings, and much more. This makes work easier, faster, more cost-effective and safer.

Switch to safe - with Klippon ${ }^{\circledR}$ Relay

Fully reliable special relays with comprehensive certification

Many machines and plants are applied worldwide and under he most diverse conditions. Therefore, they have to operate reliably under very different environmental conditions. In addition, they must comply with specific standards and directives. With Klippon ${ }^{\circledR}$ Relay, you have a range of products available to meet these requirements optimally. Whether high es or specific safety requirements: With Klipon ${ }^{\oplus}$ Relay cycles, or specific safety requirements: With Klippon ${ }^{\star}$ Relay you will always find a suitable solution.

Switch to profitable - with Klippon ${ }^{\text {® }}$ Relay

Multifunctional relay solutions for efficient warehousing

Warehousing and logistics play an important role in the assessment of total costs. With Klippon ${ }^{\circledR}$ Relay you can significantly reduce your logistic expenses. For example, we provide many of our products with Multivoltage inputs, supply you with a wide range of convenient relay KITs that are pre-assembled, function and insulation tested With these KITs you can reduce material numbers and speed up the storage and retrieval process considerably. An importan contribution to process optimisation in everyday life.

Find suitable relay modules for your application

Basics for relay module selection

Electromechanical relays are a varied and cost-effective solution for a wide range of switching processes. They can be used for level and power adaptation and form interfaces beiween control, signalling and regulating equipment and peripherals. In spite of rising raw material prices, they are still very inexpensive and can be easily integrated into a wide variety of circuit types.
Relay modules from Weidmüller are extremely reliable, durable, and available in many different designs. The diversity of their applications in the vy aplication. The following applies: Due to their desigh modules are subject to mechanical and electrical wear, which must be taken into account when relay circuits are set up.

EN 60947-4-1 and EN 60947-5-1 describe various industria reference loads such as resistive, capacitive, and inductive loads that stress the switching contact of a relay modules more or less. Electrical loads are formed out of a mixed load with ohmic, capacitive, and inductive load shares, though in practice, loads with a large inductive load share are used mostly. These include contactors, solenoid valves, motors, etc. We will take a closer look at these areas of applicatio in the following

Switching of large AC loads

If large AC loads are switched, the relay can in principal be perated until the specified maximum value of switching voltage, current, or power is reached. However, when switching AC loads, the switching voltage has a much smaller influence on the service life of the relay contact than the switching current. The reason for this is that the arc th umpticaly at ere zors of applications with inductive loads, an effective protective circuit should be provided as otherwise a significantly reduced service life can be expected.

Switching of large DC loads

Relays can only switch off relatively small direct currents because the zero crossing for extinguishing the arc is missing here. The maximum direct current value is also dependent on the switching voltage as well as on design conditions such as contact gap and contact opening speed. Corresponding current and voltage values are documented in load limit curves.

With undamped inductive DC loads, these values are lowe because the energy stored in the inductance can ignite an arc that carries the current through the open contacts. The resulting arc significantly reduces the service life compared to an resistive load.
An efective contact protection circuit can increase the service life of the contacts by 5 to 10 times compared to dine loads that are not or unfavorably protected. for this purpose

Switching of utilization categories according to EN 60947

When selecting the relay, the maximum breaking capacity for AC loads and the DC breaking values taken from the load limit curves provide only rough reference values. In practice, however, this is not sufficient because real loads in industria applications predominantly have inductive or capacitive loa hares. Those variables can result in very different value for the service life.

To avoid these disadvantages, the contactor standard EN 60947 divides the loads into different use categories, such as DC-13 or AC-15. The standard is also partly applied relays. However, users must be aware that these values are only partially suitable for practical use since all $\mathrm{DC}-13$ and AC-15 test loads are highly inductive and operated without a protective circuit.

More precise statements on switching capacity and servic life can be given based on specific application data. The more extensive the data collection, the more accurately the service life can be estimated for the respective applications nd, if necessary, optimisation suggestions made. For critical plications, the users should determine the service life values themselves.

Switching of small resistive and inductive loads

Selection table for signal relays

The indicicated currents only ppply to the normally poen contact. The data of the normally cosed contact are to be seta tapprox. one third dof the specified values. The real sevice life can be both above and below the specified value because
 out on the basis of many years of pactical experience as well as life eycle tests under aborotary conditions.

Switching of large resistive and inductive loads

Selection table for power relays

 out on the asais of many years of pracicial experience as well as sife cycle tests under laboratory conditions.

Additional information on the selection tables

Simple formulas for calculating individual values

Calculating the service life of the relay contacts for different switching currents

In the previous tables we gave you the maximum recommended currents at various loads for a service life of approx. 100,000 switching cycles. If you switch lower currents, the service life of the relay contacts will be extended. With the following formulas you can approximately calculate how the service life of the relay contacts will change.
Example: A 24 V DC solenoid valve with 200 mA current consumption should be switched with a 6.4 mm wide TERMSERIES RSS 1 CO relay. A solenoid valve corresponds of max. 1 A is specified for the relay at this load. To calculate the expected service life, proceed as follows:
$x=\frac{I_{\text {Table }}}{I_{\text {App }}}=\frac{1 \text { A }}{200 \mathrm{~mA}}=5$

$n_{\text {new }}=100,000 \cdot x=100,000 \cdot 5=500,000$| switching |
| :--- |
| cycles |

The expected service life when switching a 200 mA solenoid valve should be approx. 500,000 switching cycles.

```
App = Switching current in the application
```

$=D C$ Switching current at the $D C$ switching voltage in the application
Lead unve $=D C$ Switching current from the load limit curve of the data sheet
Nom = Continuous current from relay data sheet
${ }^{\text {Tatalo }}=$ Switching current from the selection table for the respective load
nev $=$ Service life at switching current in the application
= Reduction factor of the switching current

Calculating the switching currents for voltages that deviate from the values in the table

AC switching voltage:

With AC loads, the switching current has the greatest influence on the service life. Therefore, the switching currents from the table can also be used for switching voltages up to 100 VAC . For values below 100 V AC , the service life increases at the same switching current:
at 24 VAC four times the service life

- at 60 VAC twice the service life

Example: If the table shows a switching current of 2 A for 250 V AC AC15 load, then these 2 A are also applicable for 120 V AC . At 24 V AC switching voltage, the expected service life increases four times to 400,000 switching cycles.

DC switching voltage

When switching DC loads, the switched voltage has a large influence on the maximum switching current of the relay contact. This can also be seen from the DC load breaking used to roughly determine the maximal switching current or other DC switching voltages:

Example: A TERMSERIES RCL 1 CO relay with a DC13 load and a switching voltage of 110 V DC. According to the table a maximum of 2 A at 24 V DC applies to a DC 13 load for a service life of 100,000 switching cycles.

The curve shows a maximum switching current of approx. 0.45 A with resistive load. This must now be set in relation the rated current of the relay (16 A) from data sheet and the value for a DC13 load from the table.

$\mathrm{I}_{\mathrm{DC}}=\mathrm{I}_{\text {Load curve }} \cdot \mathrm{x}=\mathbf{0 . 4 5 \mathrm { A } \cdot 0 . 1 2 5 = 0 . 0 5 6 \mathrm { A } = 5 6 \mathrm { mA }}$

To achieve 100,000 switching cycles, a DC13 load of 56 mA can be switched with a switching voltage of 110 V DC.

Select contact materials suitable for the application

Information of various contact materials

Relay modules are used in a wide variety of industrial areas and environments. The relays must therefore be adapted to the various tasks by selecting suitable contact materials. The following applies: the load capacity of the contacts for voltage, current, and power depends essentially on the material used. To make the selection easier for you, we have compared the most important characteristics of the contact materials.

Criteria for the selection of the contact materia

- Welding tendency
- Material migration

Burn-off resistance

- Contact resistance
- Resistance to harmful gas atmospheres

Please obtain information when selecting a relay in this table

Material	Characteristics	Recommended applications
	- Higher welding tendency than AgSnO - High burn-off resistance - Lower contact resistance than $\mathrm{AgSn0}$ - Mean material migration - Low resistance to harmful gas atmospheres	- Suitable for low to high resistive and low inductive loads (solenoid valves, fans, heaters) - Standard contact material for a variety of relays - Limited suitable for high inrush currents - Suitable for loads $>12 \mathrm{~V} / 10 \mathrm{~mA}$ or $5 \mathrm{~V} / 100 \mathrm{~mA}$
Silver-nickel flash gold plated	- Higher welding tendency than $\mathrm{AgSn0}$ - High burn-off resistance (gold just storage protection) - Lower contact resistance than AgSnO - Mean material migration - Low resistance to harmful gas atmospheres	- Suitable for low to high resistive and low inductive loads (solenoid valves, fans, heaters) - The flash gold plating is a storage protection, but offers no functional improvement to AgNi - Limited suitable for high inrush currents - Suitable for loads $>12 \mathrm{~V} / 10 \mathrm{~mA}$ or $5 \mathrm{~V} / 100 \mathrm{~mA}$
$\mathrm{Ag}_{\text {siverinided leard gold plated }}^{\mathrm{Au}} \mathrm{Ni}$	- Very low resistance to burn-off - Lowest contact resistance - High resistance to harmful gas atmospheres	- Suitable for decoupling control inputs and other small resistive loads - Suitable for loads $>1 \mathrm{~V} / 1 \mathrm{~mA}$ and $<30 \mathrm{~V} / 10 \mathrm{~mA}$ - After switching loads $>30 \mathrm{~V} / 100 \mathrm{~mA}$, small powers can no longer be switched reliably because the hard gold plating has been burned-off. Only the characteristics of the base contact material AgNi still apply.
$\stackrel{\mathrm{Ag}_{\text {Siler:Tinoxide }}}{\mathrm{O}_{2}}$	- Lower welding tendency than AgNi - High resistance to burn-off - Average contact resistance - Lower material migration than AgNi - Very low resistance to harmful gas atmospheresn	- Suitable for medium to tigh resistive DC.Ioads and low up to medium inductive DC loads due to low material migration. Thanks to the low tendency to weld, itis also well suited for loads with higher inrush currents such as lamp loads, light capacitive loads, fluorescent tubes, etc. - Suitable for loads $>12 \mathrm{~V} / 100 \mathrm{~mA}$
	- Lowest welding tendency - Very high resistance to burn-off - Highest contact resistance - Low material migration	- Suitable for loads with very high inrush currents of up to $165 \mathrm{~A} / 20 \mathrm{~ms}$ or $800 \mathrm{~A} / 200 \mu \mathrm{~s}$ (e.g. lamp loads, capacitive loads, fluresescent tubes, switched-mode power supplies etc.) - Often used as a pre-making contact in parallel to AgSnO contacts

Protect relay contacts effectively

Selection criteria for protective circuits of inductive loads

In our selection tables we specified the maximum recommended switching currents for inductive loads without protective circuits. If you want to increase the service life of the protective circuit

The protective circuit on the coil side of a relay module can, for example, be implemented with an integrated or additionally pluggable freewheeling diode. However, this only protects the controlling periphery from the voltage peaks that occur in the coil of the relay module. The relay contact of the inductive load to be switched although with optimum dimensioning almost the same values for switching capacity or switching cycles can be achieved as with resistive load.

The largest reduction factor for the service life of a relay contact is the arc generated during switching off inductive loads. It is caused during the switching process by the energy stored in the coil and can destroy the contact throug material evaporation and material migration.

With DC voltage and standing arc, the relay can even fail during the first switching cycle. Voltage peaks caused by electric arcs can reach values up to several 1,000 volts.

A protective circuits must be used to suppress the formation of electric arcs.

In the following, we will explain the correct installation of the rotective circuit and the effectiveness of the most commo ypes of protective circuit. There are various ways to install an effective protective circuits. For example, the protective circuit can be mounted either parallel to the relay contact or parallel to the load.
However, the protective measure should always apply direct ly to the source of the fault. Therefore the protective circuit of the load is preferable to the circuit of the contact.

Advantages of a protective circuit at the load:
When the contact is open, the load is stil
galvanically isolated from the operating voltage The switch-off peaks of the load cannot be coupled into the control lines running in parallel

Varistors
RC modules

Free-wheeling diodes are used to protect against overvoltages caused by self-induction when an inductive DC voltage load is switched off (e.g. solenoid valves or electric motors).
They ensure that the voltage peaks that occur are reduced to the value of the diode forward voltage (U_{D}).
However, this leads to a delay in the voltage drop and thus in the switch-off process of the load

Advantage:

- Uncritical dimensioning
- Very positive effect on the service life of the contacts

Disadvantage

- Significantly extended switch off
proces
Only suitable for DC voltage
the functional principle of varistors is also based on breakdown voltages) High energies can be dissipa ed, but this causes the componen oo aging. Therefore, the breakdown voltage is reduced over time and th eakage current is increased.

Advantage

- Uncritical dimensioning
- Suitable for DC and AC voltage Slightly extended switch off process

Disadvantage

Complex and expensive with increasing power

- Low effect on the service life of the contact

With RC modules, voltage peaks are ompensated via a capacitor Thanks to its special characteristics during charging and discharging the interference pulses are already filtered out during the voltage rise and not only when the breakdown voltage $\left(U_{\text {RC }}\right)$ is reached.

Advantage:

- Suitable for DC and $A C$ voltage
- Slightly extended switch off process

Disadvantage:

- Exact dimensioning required
- High inrush current

Low effect on the service life of the contact

Switching of capacitive loads

Relays for LED lamps and devices with high inrush currents

Loads with capacitive load shares, especially LED lamps, require extreme demands on switching contacts regardless of the voltage type. They cause highly energetic current peaks at the moment of switch-on. These can reach over 150 A and weld the contact.

Until a few years ago, the lighting of buildings and facilities was provided almost exclusively by light bulbs or fluorescen tubes of buildings and facilities. Nowadays, they are replaced by LED lamps, which consume much less power and ar often much more durable. With retrofit solutions, such as LED lamps with E27 bases, this can be done quite easily. In new installations, LED lights are provided anyway.

However, problems often arise with relay circuits, such as those found in staircase illumination: LED lamps generate very strong inrush currents due to their design. Although these are much shorter than with conventional light sources, they can generate currents of over 150 A and thus weld the relay contact at the moment of switch-on.

Therefore, when switching LED lamps with standard relays, welded contacts occur after a very short time, sometimes even after the first switch-on. Furthermore, in more and mo conventional industrial loads, such as solenoid valves and

ontactors, capacitive load shares are hidden in input circuits, as these enable operation over a wide input voltage range. In order to switch such loads reliably, relays specially designed for this purpose are required. These relays hav special contact materials and designs that can reliably switch significantly higher current peaks than conventional elays with e.g. AgNi as contact maki. The characteristic ed to recoma

TERMSERIES

Special relay modules with tungsten contact
or very high inrush currents of up to 800 A for 200μ s

Single relay, 12.8 mm wide	
Rcis3T024W	8866920000
Complete module/KIT, 12.8 mm wide	
TRP 24VCC 1 NO HCP	2617930000
TRS 24VCC 1NO HCP	1479810000
TPP 242330 VCC 1 1NO HCP ED2	2663140000
TRS 242330 VCC 1 10\% HCP ED2	266298000

elay modules without tungsten conta
for high inrush currents of up to 80 A for 20 m

Single eray, 12.8 mm wide	
RCLIS31024W 1984088000	
Complete module/KIT, 12.8 mm wide	
TRP 24 VOCC 1 NOO HC	2618090000
TRS 24VOC 1NO HC	1479780000
TRP 24230VUC 1 1NO HC ED2	2663130000
TRS 24230 VVCC 1 NO HC ED2	26629700

TERMSERIES
Solid state relays for short and high inrush currents $\ll 10 \mathrm{~ms}$)
e.g. of LED lamps or devices with wide range inputs

Pluggale solidstate module DC output, 12 mm wide	Order No.
SSR 10.32VOC//2350C 5 A	1421450000
SSR 24VC/0.24VOC 3,5A	1132310000
Pluggale solidstate module DCC output, 5 mm wide	
SSS Relis 24V/24V 2ddc	4061190000
Complete module/KIT, 12.8 mm wide	
TOP 24VC 24VC5A	2618840000
TOS 24VOC 24VC5A	1990960000
TOP 24VOC 24VCC3.5A	2618700000
TOS 24VCC 24VCC, 5 ,	1127630000
Complete module/KIT, 6.4 mm wide	
TOP 24VOC 24VC2A	2618720000
TOS 24VOC 24VCC2	1127170000
Pluggale solidstate module, AC output, 5 mm wide	
SSS Reais 24V/230V I Aac	4061210000
Complete module/KIT, 6.4 mm wide	
TOP 24VOC 230VAC1A	2618420000
Tos 24VOC 230VaCIA	1127410000

microopto
Sold stae relays for short and high inrush currents $\ll 10 \mathrm{~ms}$)
e.g. of LED lamps or devices with wide range inputs

Complete module, 6.1 mm wid	Order No.

HCP relay with tungsten contact in detai

Scan QR-Code and download the flyer

Switching of very low power circuits

Relay for forwarding control signals

Low power circuits with values below $30 \mathrm{~V} / 10 \mathrm{~mA}$ are mainly used in applications where signals has to be do do not produce a sufficient arc at the contacts．

However，this arc has two important functions． On the one hand，it ensures continuous cleaning of the contacts；on the other hand，it can penetrate non－conductive foreign layers at the contacts．Such foreign layers are usually
created by oxidation or sulfidation of common contact created by oxidation or sulfidation of common contact oxide（AgSnO）．The foreign layers can increase the contact esistance after a short time to such an extent that reliable resistance after a short time to such an extent that reliable switching of low loads is no longer possible．

For these reasons，gold（Au）is used as the contact material for relays switching small loads．It has proven itself due to to ambient air containing sulphur

TERMSERIES
The all－rounder．Modular relay modules from 6 mm width with extensive accessories，large selection of variants，and unlimited cross－connection possibilities

Single reap， 5 mm wide	Order No．
Complete module／KII， 6.4 mm wide	
TPP 24VOC 110 AU	2618110000
TRS 24VOC 110 CO	1123000000

Single elay， 12.8 mm wide	Order No．
RCL425024	4058580000
Complete module／／IT， 12.8 mm wilde	
TRP 2400 C 200 AU	2618530000
trs 24 VOC 220 AU	1123730000

D－SERIES
ndustrial relay modules with innovative features and a large selection of variants for various applications．

```
Singlereray.21 mm wide
ORMM20024T Au
DRM57024TT Au
```


Forced guided contacts explained in detail

The difference to relays with conventional contacts

With type A relays, all contacts are mechanically positively driven with each other.
an example of a six-pole relay with four No contacts and two NC contacts, the four O contacts are forcibly guided with both C contacts. In this example, if one of the NO contacts welds, both NC contacts may no longer close if the relay is de-energized.

Type A relays with forcibly guided contacts an be found in our SAFESERIES Contact Extension

In a type B relay, not all contacts of a contact set are positively driven with each other

Relay modules with forcibly guided contacts use elementary relays according to IEC 61810-1 with a contact set according to IEC 61810-3. From the outside, they can hardly be differentiated from relays with conventional contacts, if at all. Due to their design, an opening failure of forcibly guided contacts an bellably detected. Relays with such contact relays with conventional contacts

- Forcibly guided NC and NO contacts are designed in such way that they cannot be closed at the same time
If a contact of a forcibly guided contact set is welded, the antivalent contacts cannot close and the contact opening

The contacts are
cated in contact chambers and are thus specially protected against other contacts and against the

Due to these normative requirements, the design and manufacturing effort for relays with positively driven contacts is much higher

relay with forcibly guided contacts

In an example of a six-pole relay with four NO contacts and two NC contacts, the four NO contacts are forcibly guided with just one of the NC contacts. In this example, if one of the NO contacts welds, the non-force-guided NC contact can still close if the relay is de-energized. The other forcibly guided NC contact may not close. The status of the other NO contacts is undetermined. The non-force-guided NC contact can close because it is not forcibly guided to th other contacts in the relay. The contacts which are not forcibly guided must be specified in the data sheet.

Positively driven relays with changeover contacts (CO) are assigned to type B by the standard, only one NC or NO contact may be used per changeover contact. The reason for this is that the phenomenon of contact spring breakage cannot be excluded, so that in the event of spring breakage of a changeover contact set, the NO and NC contacts of this contact set can be short-circuited

Type B relays with forcibly guided contacts can be found in our TERMSERIES FG and RIDERSERIES FG.

The normally open contact (NO) is welded in this exampWith standard relays a normally closed contact (NC) can also be closed in case of the de-energized state. In this way, the NC and NO contacts can be closed at the this way, the NC and NO contacts can be ciosed at the me time and an opening failure cannot be reliably detected.

The normally open contact (NO) is welded in this example. In this case, relays with forcibly guided contacts cannot have a normally closed contact (NC) which is closed in the de-energized state. In this way, the NC and NO concis cannot be closed at the same time and an opening the NC contact recd. If is with a minimum act gap of 0.5 mm even in the act gap of 0.5 mm even in the de-energized state.

B10(d) + MTTF(d)

Short explanation and example calculation

1. Introduction of MTTF and MTB

Failure data such as MTTF (Mean Time To Failure) or MTBF (Mean Time Between Failure) are ming increasingly important in the planning of machinery. This article will explain the importance of these values for electromechanical relays and solid state relays.

For the planning of electrical machines, it is necessary to know the MTBF values for the individual components such as relays in order to calculate the probability of fallure for the entire system. MTBF is the mean time between failures, so it includes the mean operating and the mean repair time (MTTR = Mean Time To Repair). MTBF, MTTF and MTTR values are usually given in years. However, in the case of electronic components such as relays, the repair time is not determined because it is not economical to repair defective relays. They are replaced after they are worn. That is why relays are referred just to MTTF. So you can also say: MTBF is equa figur for figure/parameter. It is determined by tests and empirical values and therefore gives no guaran-

$\square \backslash$ Operating time $\square Z$ Repair time

Difference between MTTF and MTTFd

The difference between MTTF and MTFF (Mean Time to Failure dangerous) is that the MTTF value indicates the mean operating to a dangerous failure Non-dangerous failures can lead to machine damage but they are not relevant for safety considerations within the risk and hazard assessment. The MTTF value for individual components is usually obtained directly from the manufactura However, the manufacturer cannot provide an MTTFd value because he cannot ultimately assess which error in the application leads to a dangerous failure at the customer. In addition, the arrangement and alignment of several elements can also have an influence on the total time span until a dangerous failure. Above all, the possibility of executing a function in two channels and therefore redundant has a considerable influence on the MTTFd value of the entire system.

This means that the MTTFd must be determined by the person who develops the machine/ plant and also plans the safety functions. This is usually the developer or the designer. These persons can calculate the MTTFd.

MTTF for electromechanical relays	With electromechanical relays, the service life is strongly dependent on the number of switching cycles, the switched load and other environmental parameters such as temperature, mounting orientation, switching frequency and many more. This is because electromechanical relays are subject to mechanical and electrical wear, mainly due to contact erosion. For these reasons, the MTTF cannot be calculated from statistical values as it is the case with a solid-state relays, instead B10 values are determined. These B10 values are determined in complex and time-consuming test setups for various load cases, so there is only a selection of different B 10 values and not every possible combination of switching current, load type and environmental parameters.
B10-value	The B10 value indicates the nominal service life in switching cycles where 90% of a unit of tested relays still work. It is therefore the average number of swit ching cycles, according to which 10% of relays are to be expected to fail. This value is a statistical expected value that was determined on the basis of lifetime tests. In real applications, the lifetime values differ from the B10 value, as each load is different and the environmental parameters, such as humidity, air pollution, heat, vibrations, radiation, etc., have an influence on the service life. The loads used for the determination of the B10 values are specified in the contactor standard EN 60947 in different categories of use suchas z.B. DC-13 or AC-15. However, users must be aware that these loads reflect practice only to a limited extent. Because all $\mathrm{DC}-13$ and $\mathrm{AC}-15$ test loads are highly inductive and operate without a protection circuit. Furthermore, the B10 values are determined at significantly higher switching frequencies than usual in reality. This is done to shorten the test execution time, otherwise tests would take years to deliver a result. An increased switching frequency also represents an increased load on the relay than usual in reality. However, it is almost impossible to compare B10 values of different providers. To compare different relays, the relays would have to be measured in exactly the same test setup. For this reason, the B 10 values are often only provided by the manufacturer on request.
MTTF calculation using the B 10 -value	For the calculation of the MTTF value, the respective B10 value which most closely corresponds to the real application is converted into the following formula from the standard EN ISO 13849-1: MTTF $=\mathbf{B 1 0} /(0,1 \mathrm{x}$ annual switching cycles in the application) The annual switching cycles in the application must be determined by the user himself.
B10d.value	The B10d indicates the number of switching cycles according to which a dangerous failures occur in 10% of the units considered. The addition "d" stands for "dangerous". The value is for the creationa risk and hazard analysis relevant and thus also for the evaluation of the safety of a machine or plant. If there is no knowledge of the number of hazardous failures, EN ISO 13849-1 recommends the following calculation for the B10d value: $\mathrm{B} 10 \mathrm{~d}=\mathrm{B} 10 \times 2$ This means that it is assumed that every second failure is a dangerous failure.
MTTFd calculation using the BlOd dvalue	For the calculation of the MTTFd value, the respective B10d value which most closely corresponds to the real application is converted into the following formula from the standard EN ISO 13849-1: MTTFd $=\mathbf{B 1 0 d} /(0,1 \times$ annual switching cycles in the application) The annual switching cycles in the application must be determined by the user himself.

2. Exemplary MTTF calculation of an electromechanical relay

B10 values available for the relay:
90,000 switching cycles at a DC13 load: 24 V DC / 1.5 A
250,000 switching cycles at an AC15 load: $230 \mathrm{~V} \mathrm{AC} / 3$
400,000 switching cycles at one AC1 load: $230 \mathrm{~V} \mathrm{AC} / 6$

Application:

Switching a solenoid valve: $230 \mathrm{~V} \mathrm{AC} / 2$
Switching frequency of the relay
$3 x$ per minute
Operating hours of the plant:
250 days a yea
22 hours a day
propriate BIO value of the relay for the appication is selected. Since a solenoid valve at 230 VAC is very similar to an AC15 load, this value is selected for the calculation.

250,000 switching cycles at an AC15 load: $230 \mathrm{~V} \mathrm{AC} / 3 \mathrm{~A}$
2) After that, the annual switching cycles of the relays must be determined. This is determined with the following formulas:

Formula signs:
 $t_{\text {zylus }}=$ Mean time between two consecutive cycles in seconds
 $h_{\mathrm{op}}=$ Average operating time in hours per day ($0-24$ hours) $d^{2}=$ Average operating time in days per year ($0-365$ days)

$\mathrm{d}_{\text {op }}=$ Average operating time in days per year (0-36
$=$ Average number of switching cycles
$\mathrm{t}_{2 \text { ypusus }}=60$ seconds / switching frequency of the relay per minute
$t_{\text {thausus }}=60$ seconds $/ 3=20$ seconds
$\mathrm{n}_{\mathrm{op}}=\left(\mathrm{d}_{\mathrm{op}} \times \mathrm{h}_{\mathrm{op}} \times 3600 \mathrm{~s} / \mathrm{h} / \mathrm{t}\right.$
$n_{\text {op }}=(250$ days $/$ year $\times 22$ hours/day $\times 3600$ seconds/hour) $/ 20$ seconds
$\mathrm{n}_{\mathrm{op}}=990,000$ switching cycles/year)
3) Calculation of the MTTF

MTTF $=\mathrm{B} 10 /(0.1 \times$ Annual switching cycles in the application)
MTTF $=250,000$ switching cycles / ($0.1 \times 990,000$ switching cycles/year) $M T T F=2.52$ years

3. MTTF for solid-state relays

The MTTF value for solid-state relays is calculated from the failure rates of the individual electronic components, as they have no mechanical components that wear out due to mecha tronic components, as they have no mechanical components that wear out due to mecha-
nical abrasion or contact burn-off. The MTTF values of the Weidmüller solid-state relays can be found in the data sheet. The calculation was carried out in accordance with the standards SN 29500 and EN ISO $13849-1$. The value refers to an ambient temperature of $40^{\circ} \mathrm{C}$. When calculating the values for solid-state relays, the following things are not taken into account:

Electrical connections and plug-in connection
PCB (not included in the SN29500 standard)
Soldering process due to quality control processes in manufacturing

The perfect match in engineering

Product data and configurator from Weidmüller

We understand data as a digital product from Weidmüller and set standards for our customers - high-quality and reliable, consistent and future-oriented.

The best data for the best solution

Data is the basic for time-saving planning and project
planning, error-free wiring, simple marking and consistent of your product
More successful through standards: our product data are based on the industry standard eCl@ss. This offers a consis tent semantics, which is especially needed for industry 4.0. Get started right away instead of tiresome converting data!

Faster, better, safe in engineering - the WMC Configure your required solutions and components simple and convenient with the Weidmüller Configurator and choose rom over 10,000 Weidmüller products.
The software is cross-platform ready, user-friendly and compatible with all major E-CAD planning tools. Thus, it actively supports you in solving configuration challenges with mounting rails, housings and HDC's.

Automation and manufacturing support
Engineering data from Weidmüller is based on the industry standard eCl@ss. This ensures both high quality and a depth dat hat, toger w ,"eady-torobor compons, ch standardized formats as AutomationML and Cl @s, he result of the integrated engineering -the digital prod

1.) T//
 ZUKEN

Weidmüller provides you with all of the data, software tools and interfaces that you need throughout your processes - from electrical and mechanical planning, orderin and production of configured products up to single products. No matter whether for cabinet building, automation, building planning or printed circuit board design: we offer you the solutions that accelerate your processes, tailored to your requirements.

Engineering
Integrated engineering is the key to efficient product deve opment. This requires a combination of engineering tools tha and sources High-quality product information is required for lanning in engineering systems such as Zuken or EPLAN. Weidmüller makes this information available in all common ormats both in the data portals and on the Weidmüller website for you to download.
description - can even be used in production processes

selection guide fore Our selection guide in digital and printed form support you in finding the right relay for safe and reliable switching of differe oads
weidmueller.com/relayselecto

Weidmüller - Your partner in Smart Industrial Connectivity

As experienced experts we support our customers and partners around the world with products, solutions and services in the industrial environment of power, signal and data. We are at home in their industries and markets and know the technological challenges of tomorrow. We are therefore continuously developing innovative, sustainable and useful solutions for their individual needs. Together we set standards in Industrial Connectivity.

We cannot guarantee that there are no mistakes in the publications or software provided by us to the customer for the purpose of making orders. We try our best to quickly correct errors in our printed media.

All orders are based on our general terms of delivery, which can be reviewed on the websites of our group companies where you place your order. On demand we can also send the general terms of delivery to you.

Exclusion of liability
The content of this brochure describes certain technical problems and sketches out potential solutions or approaches to solutions to correct these problems. The solutions or approaches sketched out in this brochure are estimates or assumptions based on the current state of Weidmüller's technical knowledge and - unless otherwise explicitly described in this document - are neither all-encompassing nor relate to historical events or facts. The estimates or assumptions presented in this white paper, therefore, can be subject to certain risks and factors that have not been taken into account, and that could lead to deviations in reality. In this respect, Weidmüller provides no guarantee that the information presented in this brochure is complete or up to date. Any use of this content is at the user's own risk, and Weidmüller excludes any guarantee or liability resulting from use of the information presented in this document.

[^0]: 吥要回

 Visit our website for more information
 www．weidmueller．com／switchtosimple

