

BALDOR • RELIANCE II

Product Information Packet

EM2548T-4CI

60HP,1185RPM,3PH,60HZ,404T,M400MAG,OPEN,

Copyright © All product information within this document is subject to Baldor Electric Company copyright © protection, unless otherwise noted.

BALDOR • RELIANCE Product Information Packet: EM2548T-4CI - 60HP,1185RPM,3PH,60HZ,404T,M400MAG,OPEN,

Part Detail														
Revision:	F		Status:		PRD/A	Change #:				Proprietary:	No			
Туре:	AC		Prod. Type:		A40052M	Elec. Spec:		A40WG0475		CD Diagram:				
Enclosure:	DP		Mfg Plant:			Mech. Spec:				Layout:				
Frame:	404T		Mounting:		F1	Poles:		06		Created Date:	10	19-2010		
Base:			Rotation:		R	Insulation:				Eff. Date:	07	24-2012		
Leads:	6#6		Literature:			Elec. Diagra	ram:			Replaced By:				
Nameplate NF	P2384L													
SPEC NO.		P40G4	P40G4411 CAT.NO.		IO . EM254		EM2548T-	4CI FRAME			404T			
HP		60		PHASE			3		DESIGN		В	TYPE	Р	
RPM		1185		HZ		60			AMB		40	SF	1.15	
VOLTS		460	DUTY		<i>(</i>		CONT INSUL.		INSUL.C	.CLASS F				
AMPS		70.4	70.4 EN		ENCL		DP	OP CODE		G				
DRIVE END BEA	RING	80BC0	3J30X	NEMA-	A-NOM-EFFICIENCY 95		95							
OPP D.E. BEARI	NG	80BC0	3J30X				_							
SER.NO.					·									
									MOTOR	WEIGHT				

Parts List		
Part Number	Description	Quantity
SA206547	SA P40G4411	1.000 EA
RA193814	RA P40G4411	1.000 EA
613-6PU	N/P (RELEASE QTY 10,000)	1.000 EA
NP2384L	SUPER-E ,SS, CSA, CSA SUPER-E MONOGRAM	1.000 EA
000901001AA	N/P (RELEASE QTY 5,500)	1.000 EA
004824015A	GREASE POLYREX EM	0.884 LB
032018010AK	HHCS 1/4-20X1-1/4L PLTD.	4.000 EA
032018020DK	HHCS 1/2-13X2-1/2 PLTD.	2.000 EA
032018026DK	HHCS 1/2-13X3-1/4L PLTD.	2.000 EA
032018030CK	HHCS 3/8-16X3-3/4 PLATED	3.000 EA
034000012AB	WSHR 1/4 STD. PLATED	4.000 EA
034017012AB	LCKW 1/4 STD. PLATED	4.000 EA
035000001A	ALFTG 1/8" 1610-BL	1.000 EA
035000001A	ALFTG 1/8" 1610-BL	1.000 EA
034690002AB	PPLG 1/4" PLTD.	1.000 EA
089407052A	BRKT 400 089407052WCB KB	1.000 EA
405851012AD	SPACE	4.000 EA
410700000DA	WAVY SPRING WASHER (400)	1.000 EA
702609001A	BAFFL 400 SUB PAINT	1.000 EA
032018010AK	HHCS 1/4-20X1-1/4L PLTD.	4.000 EA
032018020DK	HHCS 1/2-13X2-1/2 PLTD.	2.000 EA
032018026DK	HHCS 1/2-13X3-1/4L PLTD.	2.000 EA
032018030CK	HHCS 3/8-16X3-3/4 PLATED	3.000 EA
034000012AB	WSHR 1/4 STD. PLATED	4.000 EA

BALDOR • RELIANCE Product Information Packet: EM2548T-4CI - 60HP,1185RPM,3PH,60HZ,404T,M400MAG,OPEN,

Parts List (continued)		
Part Number	Description	Quantity
034017012AB	LCKW 1/4 STD. PLATED	4.000 EA
034690002AB	PPLG 1/4" PLTD.	1.000 EA
089407052A	BRKT 400 089407052WCB KB	1.000 EA
405851012AD	SPACE	4.000 EA
702609001A	BAFFL 400 SUB PAINT	1.000 EA
032018010CK	HHCS 3/8-16X1-1/4 PLTD.	4.000 EA
033512004LB	HHTTS 1/4-20X1/2 PLTD.	1.000 EA
033512008LB	HHTTS 1/4-20X1 PLATED	4.000 EA
048897010DH	BUSH - 400	1.000 EA
067053000B	GASK 320-400	1.000 EA
076708000BB	C/B - 360	1.000 EA
076709000A	C/B CVR - 360	1.000 EA
415000003D	T/LUG 897-777 KPA25/G16	1.000 EA
MG1000Y03	WILKO 689.710 GOLD PAINT SUPER E	0.250 GA
LB1346	LABEL,SUPER-E GP(4X4)	1.000 EA
033775004EA	DRSCR #6-1/4 304 S.S.	4.000 EA
034180044JA	KEY 3/4X3/4X5-1/2 L	1.000 EA
421948044	LABEL, MYLAR	1.000 EA
PK5004A02	WOOD BASE 40X32 STACK 2X4 RUNNER	1.000 EA

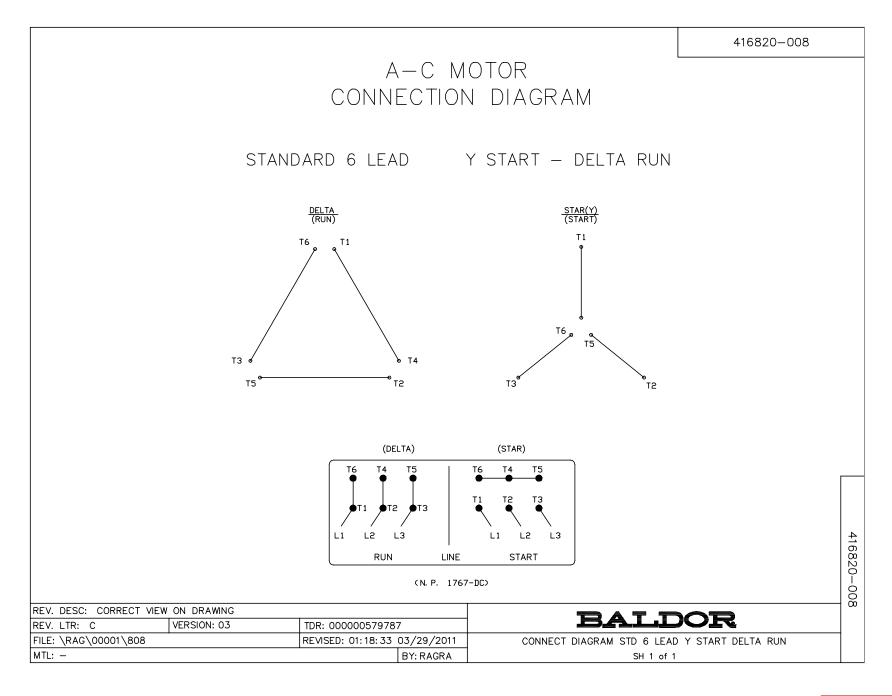
DAT	DOD.	DEL	ANCER	
		n = L		

BALDOR	REMARKS: TYPIC XE MO	AMPERES SHOWN FOR 460. VOLT CONNECTION. IF	FULL LOAD	BREAKDOWN	AUTT OB	LOCKED ROTOR			5/4	4/4	3/4	2/4	1/4	NO LOAD	LOAD		595867	E/S		70 1	AMPS			REL. S.O.
	TYPICAL DATA XE MOTOR-NEMA NOM.	OR 460. VOLT							75.0	60.0	45.0	30.0	15.0	0	НP		418142-71-DE	ROTOR	2011	CONT	DUTY	d d	4044	FRAME
DR. BY J.J.HARRISON CK. BY W.L.SMITH APP. BY W.L.SMITH DATE 07/21/09	EFF. 94.5%,	CONNECTION TH THE RATED V	1186	1130	400	0	RPM	SPI	87.3	70.4	55.0	41.5	30.9	26.0	AMPERES	PE	Ä		10/1	40 /E	AMB °C/ INSUL.	ć	60	HP
RISON TH TH OTH OTH OTH OTH OTH OTH OTH OTH O	GUAR. MIN.	ON. IF OTHER VOLTAGE					*	SPEED TORQUE							, s	PERFORMANCE		TEST		1 1 1	ស	r	đ	TYPE
A-C MOTOR PERFORMANCE DATA	EFF. 94.1%	CONNECTION. IF OTHER VOLTAGE CONNECTIONS ARE AVAILABLE, E RATED VOLTAGE	100	241	149	156	TORQUE FULL LOAD		1182	1186	1190	1193	1197	1200	RPM		-	н п	t	đ	NEMA DESIGN		3/60	PHASE/ HERTZ
н		NECTIONS AR	266	640	395	415	TORQUE LBFT.		85.6	84.4	80.7	71.7	49.7	4.46	POWER FACTOR		i	TEST DATE 0		n .				
A40WG0475-R001 ISSUE DATE 12/15/10		E AVAILABI					E .									-	. 115	STATOR OHMS (BETW		2	CODE		1185	RPM
75-R001 12/15/10		E, THE	70.4	239	400	425	AMPERES		94.0	94.6	94.8	94.4	91.6	0	% EFFICIENCY		<u>.</u>	STATOR RES.@25 °C S (BETWEEN LINES)		E C D	ENCI.	400	460	VOLTS

Printed on

12/15/10 23:11 @

FRAME 4 PHASE/HERTZ TORQUE IN LB. FT. (2) SPEED IN RPM (4)_ 1188 1184 0 200 1000 1200 1168 1172 1180 1192 1196 1200 404T AMPS AT 460 VOLTS (1) P.F.(2) & EFF.(3) IN % 0 100 500 600 100 20 AMPS AT 460 VOLTS (1) 0 20 120 160 100 200 5 VOLTS 460
AMPS 70.4
DUTY CONT RPM AMB °C/INSUL XE MOTOR-NEMA NOM. EFF. 94.5%, GUAR. MIN. EFF. 94.1% 20 1185 300 400 500 600 SPEED IN RPM,(FLT = 266 LB. FT.) 30 40/F NEMA DESIGN B
CODE LETTER G
ENCLOSURE PROT E/S HORSEPOWER OTHER VOLTAGE A-C MOTOR
PERFORMANCE
CURVES FL 00 CONNECTIONS ARE TEST S.O. TYPICAL DATA
TEST DATE --STATOR RES.@ 25 °C.115 70 ROTOR 800 418142-71-DE 900 08 A40WG0475-R001 12/15/10 OHMS (BETWEEN LINES) 90 1000 1100 100 110 1200


-11

TIME IN SEC.

-11

٣

SH 1 of 1

3/09

Installation & Operating Manual

BALDOR·RELIANCE!

TEAO, TEFC Enclosure **Explosion Proof**

AC Induction Motors Integral Horsepower

Table of Contents

Overview	
limited Warranty	
O - Z-Z NI - Zi - A	
Receiving	
Storage	
Extended Storage	
Greater than 6 months	
Greater than 18 months	
Unpacking	
Handling	
Overview	
Mounting	
Alignment	
Doweling & Bolting	
Guarding	
Power Connection	
Grounding	
Conduit Box	
AC Power	
Rotation	
Connection Diagrams	
First Time Start Up	
Initial Lubrication	
Test for General Condition	
Coupled Start Up	
Jogging and Repeated Starts	
Heating	
Hazardous Locations	
Selection	
Protection Concepts	
Repair of Motors used in Hazardous Locations	
Section 3 Maintenance & Troubleshooting	
General Inspection	
Relubrication & Bearings	
Type of Grease	
Relubrication Intervals	
Relubrication Procedure	

Table of Contents i

General Information 1-1

General Information Section

Overview

This manual contains general procedures that apply to Baldor Motor products. Be sure to read and understand the Safety Notice statements in this manual. For your protection, do not install, operate or attempt to perform maintenance procedures until you understand the **Warning and Caution** statements. A **Warning** statement indicates a possible unsafe condition that can cause harm to personnel. A **Caution** statement indicates a condition that can cause damage to equipment.

This instruction manual is not intended to include a comprehensive listing of all details for all procedures required for installation, operation and maintenance. This manual describes general guidelines that apply to most of the motor products shipped by Baldor. If you have a question about a procedure or are uncertain about any detail, Do Not Proceed. Please contact your Baldol distributor for more information or clarification.

Before you install, operate or perform maintenance, become familiar with the following:

NEMA Publication MG-2, Safety Standard for Construction and guide

- for Selection, Installation and Use of Electric Motors and Generators. IEC 34-1 Electrical and IEC72-1 Mechanical specifications
- ANSI C51.5, the National Electrical Code (NEC) and local codes and practices

Limited Warranty

www.baldor.com/support/warranty_standard.asp

Safety Notice:

and guide for se Code and local or fatal injury. C Be sure that you are completely familiar with NEMA publication MG-2, safety standards for construction and guide for selection, installation and use of electric motors and generators, the National Electrical This equipment contains high voltage! Electrical shock can cause serious or fatal injury. Only qualified personnel should attempt installation, operation and maintenance of electrical equipment. al codes and practices. Unsafe installation or use can cause conditions that lead to serious Only qualified personnel should attempt the installation, operation and maintenance of this

WARNING: Do not touch electrical connections before you first ensure that power has been disconnected. Electrical shock can cause serious or fatal injury. Only qualified personnel should attempt the installation, operation and maintenance of this equipment.

WARNING Disconnect all electrical power from the motor windings and accessory devices before disassembly of the motor. Electrical shock can cause serious or fatal injury.

WARNING Be sure the system is properly grounded before applying power. Do not apply AC power before you ensure that all grounding instructions have been followed. Electrical shock can cause serious or fatal injury. National Electrical Code and Local codes must be carefully followed.

WARNING Avoid extended exposure to machinery with high noise levels. Be sure to wear ear protective devices to reduce harmful effects to your hearing.

WARNING: Surface temperatures of motor enclosures may reach temperatures which can cause discomfort or injury to personnel accidentally coming into contact with hot surfaces. When installing, protection should be provided by the user to protect against accidental contact with hot surfaces Failure to observe this precaution could result in bodily injury.

This equipment may be connected to other machinery that has rotating parts or parts that are driven by this equipment. Improper use can cause serious or fatal injury. Only qualified

WARNING:

WARNING: Do not by-pass or disable protective devices or safety guards. Safety features are designed to prevent damage to personnel or equipment. These devices can only provide protection if they remain operative. personnel should attempt to install operate or maintain this equipment.

WARNING: Avoid the use of automatic reset devices if the automatic restarting of equipment can be

hazardous to personnel or equipment.

WARNING: Be sure the load is properly coupled to the motor shaft before applying power. The shaft I must be fully captive by the load device. Improper coupling can cause harm to personnel equipment if the load decouples from the shaft during operation. The shaft key

these motors are to be returned to a hazardous and/or explosive atmosphere. UL Listed motors must only be serviced by UL Approved Authorized Baldor Service Centers

WARNING:

WARNING:

Thermostat contacts automatically reset when the motor has slightly cooled down. To prevent injury or damage, the control circuit should be designed so that automatic starting of the motor is not possible when the thermostat resets.

Caution:

1-2

General Information

Safety Notice Continued

WARNING: Use proper care and procedures that are safe during handling, lifting, installing, operating and maintaining operations. Improper methods may cause muscle strain or other harm.

Pacemaker danger – Magnetic and electromagnetic fields in the vicinity of current carrying carrying conductors and permanent magnet motors can result result in a serious health hazard to area surrounding a permanent magnet motor. with cardiac pacemakers, metal implants, and hearing aids. To avoid risk, stay way from

WARNING Before performing any motor maintenance procedure, be sure that the equipment connected

the motor parts can cause injury or motor damage. the motor shaft cannot cause shaft rotation. If the load can cause shaft rotation, disconnect the load from the motor shaft before maintenance is performed. Unexpected mechanical rotation of

WARNING Do not use non UL/CSA listed explosion proof motors in the presence of flammable or combustible vapors or dust. These motors are not designed for atmospheric condition require explosion proof operation. conditions that

WARNING Motors that are to be used in flammable and/or explosive atmospheres must display the UL label on the nameplate along with CSA listed logo. Specific service conditions for these motors are defined in NFPA 70 (NEC) Article 500.

WARNING Guards must be installed for rotating parts such as couplings, pulleys, external fans, and unused shaft extensions, should be permanently guarded to prevent accidental contact by personnel

Caution: perform maintenance. To prevent premature equipment failure or damage, only qualified maintenance personnel should Accidental contact with body parts or clothing can cause serious or fatal injury.

Caution: Do not over tension belts. Excess tension may damage the motor or driven equipment.

Caution: Caution: Do not over-lubricate motor as this may cause premature bearing failure.

Do not lift the motor and its driven load by the motor lifting hardware. The motor lifting hardware is adequate for lifting only the motor. Disconnect the load (gears, pumps, compressors, or other driven equipment) from the motor shaft before lifting the motor.

If eye bolts are used for lifting a motor, be sure they are securely tightened. The lifting direction should not exceed a 20° angle from the shank of the eye bolt or lifting lug. Excessive lifting should not exceed a 20° ar angles can cause damage.

than the maximum motor rated amps listed on the rating plate. To prevent equipment damage, be sure that the electrical service is not capable of delivering more

If you have any questions or are uncertain about any statement or procedure, or if you require additional information please contact your Baldor distributor or an Authorized Baldor Service Center. If a HI POT test (High Potential Insulation test) must be performed, follow the precautions and procedure in NEMA MG1 and MG2 standards to avoid equipment damage.

Each Baldor Electric Motor is thoroughly tested at the factory and carefully packaged for shipment. When you receive your motor, there are several things you should do immediately.

Receiving

Verify that the part number of the motor you received is the same as the part number listed on your Observe the condition of the shipping container and report any damage immediately to the commercial carrier that delivered your motor.

The motor should be lifted using the lifting lugs or eye bolts provided. purchase order.

Caution: Handling

Do not lift the motor and its driven load by the motor lifting hardware. The motor lifting hardware is adequate for lifting only the motor. Disconnect the load (gears, pumps, compressors, or other driven equipment) from the motor shaft before lifting the motor.

- Use the lugs or eye bolts provided to lift the motor. Never attempt to lift the motor and equipment connected to the motor by this method. The lugs or eye bolts provided are only the motor. Never lift the motor by the motor shaft or the hood of a WPII motor. designed to lift additional
- To avoid condensation inside the motor, do not unpack until the motor has reached room temperature (Room temperature of the room in which it will be installed). The packing provides insulation from temperature changes during transportation.
- When lifting a WPII (Weather Proof Type 2) motor, do not lift the motor by inserting lifting lugs into the motor frame

General Information 1-3

Storage

4 If the motor must be mounted to a plate with the driven equipment such as pump, compressor etc., it may not be possible to lift the motor alone. For this case, the assembly should be lifted by a sling around the mounting base. The entire assembly can be lifted as an assembly for installation. Do not lift the assembly using the motor lugs or eye bolts provided. Lugs or eye bolts are designed to

lift motor only. If the load is unbalanced (as with couplings or additional attachments) additional slings or other means must be used to prevent tipping. In any event, the load must be secure before lifting. If the load is unbalanced (as with couplings or additional attachments) additional slings or other means must be used to prevent tipping. In any event, the load must be secure before lifting.

from date of shipment. Storage requirements for motors and generators that will not be placed in service for at least six months

failure. Improper motor storage will result in seriously reduced reliability and failure. An electric motor that does not experience regular usage while being exposed to normally humid atmospheric conditions is likely to develop rust in the bearings or rust particles from surrounding surfaces may contaminate the bearings. The electrical insulation may absorb an excessive amount of moisture leading to the motor winding

boxes are) to allow opening and reclosing many times without damage to the "shell" A wooden crate "shell" should be constructed to secure the motor during storage. This is similar to an export box but the sides & top must be secured to the wooden base with lag bolts (not nailed as export

Minimum resistance of motor winding insulation is 5 Meg ohms or the calculated minimum, which ever is greater. Minimum resistance is calculated as follows: Rm = kV + 1

Example: where: (Rm is minimum resistance to ground in Meg–Ohms and kV is rated nameplate voltage defined as Kilo–Volts.) For a 480VAC rated motor Rm =1.48 meg–ohms (use 5 M Ω). For a 4160VAC rated motor Rm = 5.16 meg–ohms.

Preparation for Storage

- Ņ Some motors have a shipping brace attached to the shaft to prevent damage during transportation. The shipping brace, if provided, must be removed and stored for future use. The brace must be reinstalled to hold the shaft firmly in place against the bearing before the motor is moved. Store in a clean, dry, protected warehouse where control is maintained as follows
- <u>a</u> c b а Shock or vibration must not exceed 2 mils maximum at 60 hertz, to prevent the bearings from brinelling. If shock or vibration exceeds this limit vibration isolation pads must be used. Storage temperatures of 10°C (50°F) to 49°C (120°F) must be maintained
- Relative humidity must not exceed 60%.

ω

- Measure and record the resistance of the winding insulation (dielectric withstand) every 30 days Note: Remove motor from containers when heaters are energized, reprotect if necessary Motor space heaters (when present) are to be connected and energized whenever there is a possibility that the storage ambient conditions will reach the dew point. Space heaters are optional
- Þ ä storage. District office. f motor insulation resistance decreases below the minimum resistance, contact your Baldor
- Place new desiccant inside the vapor bag and re-seal by taping it closed. If a zipper-closing type bag is used instead of the heat-sealed type bag, zip the bag closed instead of taping it. Be sure to place new desiccant inside bag after each monthly inspection
- Place the shell over the motor and secure with lag bolts.

4

9

Where motors are mounted to machinery, the mounting must be such that the drains and breathers are fully operable and are at the lowest point of the motor. Vertical motors must be stored in the vertical position. Storage environment must be maintained as stated in step 2.

Page 16 of 41

sling

- peri a. Motors with anti-friction bearings are to be greased at the time of going into extended storage with periodic service as follows:
- Motors marked "Do Not Lubricate" on the nameplate do not need to be greased before or during
- Ball and roller bearing (anti-friction) motor shafts are to be rotated manually every 3 months and greased every 6 months in accordance with the Maintenance section of this manual.

Þ

- ဂ္ greased every 6 months in accordance will the wanterial to shipment.

 Sleeve bearing (oil lube) motors are drained of oil prior to shipment.

 The oil reservoirs must be refilled to the indicated level with the specified lubricant, (see
- "Provisions for oil mist lubrication" These motors are packed with grease. distribute oil to bearing surfaces The shaft should be rotated monthly by hand at least 10 to 15 revolutions to Storage procedures
- <u>a</u> are the same as paragraph 5b.
- ው "Oil Mist Lubricated" – These bearings are protected for temporary storage by a corrosion inhibitor. If stored for greater than 3 months or outdoor storage is anticipated, connected to the oil mist system while in storage. If this is not possible, add the amount of grease indicated under "Standard Condition" in Section 3, then rotate the shaft 15 times by hand.
- All breather drains are to be fully operable while in storage (drain plugs removed). The motors n be stored so that the drain is at the lowest point. All breathers and automatic "T" drains must be operable to allow breathing and draining at points other than through the Vertical motors should be stored in a safe stable vertical position. bearings around the shaft.

0

- Coat all external machined surfaces with a rust preventing material. An acceptable product for this purpose is Exxon Rust Ban # 392.
- Non-Regreaseable Motors as a mechanical protection against damage. Carbon brushes should be lifted and held in place in the holders, above the commutator, by the brush holder fingers. The commutator should be wrapped with a suitable material such as cardboard paper

Non-regreasable motors with "Do Not Lubricate" on the nameplate should have the motor shaft rotated 15 times to redistribute the grease within the bearing every 3 months or more often.

All Other Motor Types

Before storage, the following procedure must be performed.

- 9 4 5 Remove the grease drain plug, if supplied, (opposite the grease fitting) on the bottom of each bracket prior to lubricating the motor.

 The motor with regreasable bearing must be greased as instructed in Section 3 of this manual.

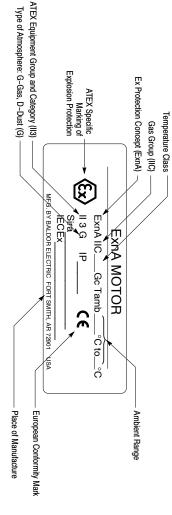
 - Replace the grease drain plug after greasing.
- The motor shaft must be rotated a minimum of 15 times after greasing
- Motor Shafts are to be rotated at least 15 revolutions manually every 3 months and additional grease added every nine months (see Section 3) to each bearing.
- Bearings are to be greased at the time of removal from storage

Removal l From Storage

9

- Remove all packing material.
- Measure and record the electrical resistance of the winding insulation resistance meter at the time of removal from storage. The insulation resistance must not be less than 50% from the initial reading recorded when the motor was placed into storage. A decrease in resistance indicates moisture in the windings and necessitates electrical or mechanical drying before the motor can be placed into service. If resistance is low, contact your Baldor District office.
- Regrease the bearings as instructed in Section 3 of this manual

ω 4


bearing and prevent damage during movement Reinstall the original shipping brace if motor is to be moved. This will hold the shaft firmly against the

General Information 1-5

Equipment Marking for IEC Certified Product

IEC certified products have special markings that identify the protection concept and environment requirements. An example is shown in Figure 3-1.

Figure 3-1 **IEC Certified Product Markings**

Specific Conditions of Use: If the motor certificate number is followed by the symbol "X", this indicates that the motor has specific conditions of use which are indicated on the certificate. It is necessary to review the product certification certificate in conjunction with this instruction manual.

If the motor is evaluated for operation with an adjustable speed drive, the type of converter (for example PWM for Pulse Width Modulated) and safe speed ranges (for example 0–120Hz) will be specified in the certification documents or on motor nameplates. It is necessary to consult the adjustable speed drive manual for proper set up. Operation On Frequency Converters: If the motor is evaluated for operation w

Installation Section 2 & Operation

Overview

Installation should conform to the National Electrical Code as well as local codes and practices. When other devices are coupled to the motor shaft, be sure to install protective devices to prevent future accidents. Some protective devices include, coupling, belt guard, chain guard, shaft covers etc. These protect against accidental contact with moving parts. Machinery that is accessible to personnel should provide further protection in the form of guard rails, screening, warning signs etc.

It is important that motors be installed in locations that are compatible with motor enclosure and ambient conditions. Improper selection of the motor enclosure and ambient conditions can lead to reduced operating life of the motor.

Proper ventilation for the motor must be provided. Obstructed airflow can lead to reduction of motor life.

- **Open Drip-Proof/WPI** motors are intended for use indoors where atmosphere is relatively clean, dry, well ventilated and non-corrosive.
- outdoor locations. Totally Enclosed and WPII motors may be installed where dirt, moisture or dust are present and in

Severe Duty, IEEE 841 and Washdown Duty enclosed motors are designed for installations with high corrosion or excessive moisture conditions. These motors should not be placed into an environment where there is the presence of flammable or combustible vapors, dust or any combustible material, unless specifically designed for this type of service.

Hazardous Locations are those where there is a risk of ignition or explosion due to the presence of combustible gases, vapors, dust, fibers, or flyings. Facilities requiring special equipment for hazardous locations are typically classified in accordance with local requirements. In the US market, guidance is provided by the National Electric Code.

The motor should be installed in a location compatible with the motor enclosure and specific ambient. To allow adequate air flow, the following clearances must be maintained between the motor and any obstruction:

Table 2-1 Enclosure Clearance

TEFC / TENV (IC0141) Enclosures
Fan Cover Air Intake 180 - 210T Frame 1" (25mm)
Fan Cover Air Intake 250 – 449T Frame 4" (100mm)
IEC 112 – 132 1" (25mm)
IEC 160 - 280 4" (100mm)
Exhaust Envelope equal to the P Dimension on the motor
dimension sheet
OPEN/Protected Enclosures
Bracket Intake Same as TEFC
Frame Exhaust Exhaust out the sides envelope
A minimum of the P dimension plus 2" (50mm)
Exhaust out the end same as intake.

The motor must be securely installed to a rigid foundation or mounting surface to minimize vibration and maintain alignment between the motor and shaft load. Failure to provide a proper mounting surface may cause vibration, misalignment and bearing damage.

Foundation caps and sole plates are designed to act as spacers for the equipment they support. If these devices are used, be sure that they are evenly supported by the foundation or mounting surface. When installation is complete and accurate alignment of the motor and load is accomplished, the base should be grouted to the foundation to maintain this alignment.

The standard motor base is designed for horizontal or vertical mounting. Adjustable or sliding rails are designed for horizontal mounting only. Consult your Baldor distributor or authorized Baldor Service Center

Installation & Operation 2-1

-2 Installation & Operation

Frame Mounting Holes

Some motors have standardized frames containing 6 or 8 mounting holes. 6 hole frames are not suitable for field reversal of mounting from F-1 to F-2, etc. Figure 2-2 indicates the proper mounting holes to use.

Figure 2-2 6 & 8 Hole Motor Frame Mounting Shaft Always use these holes, closer to the shaft 112S, 132S, 160M, 180M, 200M, 225S, 250S, 280S, (IEC) Allows F-1 to F-2 Conversion on 8 hole

For long frame designations 184, 215, 256, 286, 326, 365, 405, 445 (NEMA) (IEC) 112M, 132M, 160L, 200L, 225M

Caution:

Alignment

Do not lift the motor and its driven load by the motor lifting hardware. The is adequate for lifting only the motor. Disconnect the load (gears, pumps, driven equipment) from the motor shaft before lifting the motor. The motor lifting hardware compressors, or other

acceleration or shock forces. In the case of assemblies on a common base, any lifting means provided on the motor should not be used to lift the assembly and base but, rather, the assembly should be lifted by a sling around the base or by other lifting means provided on the base. Assure lifting in the direction intended in the design of the lifting means. Likewise, precautions should be taken to prevent hazardous overloads due to deceleration,

Accurate alignment of the motor with the driven equipment is extremely important. The pulley, sprocket, or gear used in the drive should be located on the shaft as close to the shaft shoulder as possible. It is recommended to heat the pulley, sprocket, or gear before installing on the motor shaft. Forcibly driving a unit on the motor shaft will damage the bearings. For direct drive, use flexible couplings if possible. Consult the drive or equipment manufacturer for more information. Mechanical vibration and roughness during operation may indicate poor alignment. Use dial indicators to check alignment. The space between coupling hubs should be maintained as **Direct Coupling** recommended by the coupling manufacturer.

ώ cause failure. Pulley Ratio

Ņ

The best practice is to not exceed an 8:1 pulley ratio.

End-Play Adjustment

The axial position of the motor frame with respect to its load is also extremely important. The standard motor bearings are not designed for excessive external axial thrust loads. Improper adjustment will

₽ ₽ not over tension belts. Excess tension may damage the motor or driven equipment.

Belt Drive

Caution:

tension should be sufficient to may occur during starting. Align sheaves carefully to minimize belt wear and axial bearing loads (see End-Play Adjustment). Belt tension should be sufficient to prevent belt slippage at rated speed and load. However, belt slippage

Installation & Operation 2-3

Doweling & Bolting After proper alignment is verified, dowel pins should be inserted through the motor feet into the foundation. This will maintain the correct motor position should motor removal be required. (Baldor•Reliance motors are designed for doweling.)

- Drill dowel holes in diagonally opposite motor feet in the locations provided
- Drill corresponding holes in the foundation.
- Install proper fitting dowels
- Mounting bolts must be carefully tightened to prevent changes in alignment.
 Use a flat washer and lock washer under each nut or bolt head to hold the motor feet secure.
 Flanged nuts or bolts may be used as an alternative to washers.

Guarding

WARNING:

Guards must be installed for rotating parts such as couplings, pulleys, external fans, and unused shaft extensions, should be permanently guarded to prevent accidental contact by personnel. Accidental contact with body parts or clothing can cause serious or fatal injury.

Guards must be installed for rotating parts such as couplings, pulleys, external fans, and unused shaft extensions. This is particularly important where the parts have surface irregularities such as keys, key Some satisfactory methods of guarding are:

- Covering the machine and associated rotating parts with structural or decorative parts of the driven
- Providing covers for the rotating parts. Covers should be sufficiently rigid to maintain adequate guarding during normal service.

Power Connection Motor and control wiring, overload protection, disconnects, accessories and grounding should conform to the National Electrical Code and local codes and practices.

heat shrink tubing. be fully insulated. Flying leads must be insulated with two full wraps of electrical grade insulating tape or For ExnA hazardous location motors, it is a specific condition of use that all terminations in a conduit box

In the USA consult the National Electrical Code, Article 430 for information on grounding of motors and consult the appropriate national or local code applicable. point, the motor or generator terminal housing, and the motor or generator frame. In non-USA locations generators, and Article 250 for general information on grounding. In making the ground connection, installer should make certain that there is a solid and permanent metallic connection between the ground , the

member. Some motors are supplied with the bonding conductor on the concealed side of the cushion ring to protect the bond from damage. Motors with bonded cushion rings should usually be grounded at the time of installation in accordance with the above recommendations for making ground connections. When motors with bonded cushion rings are used in multimotor installations employing group fusing or group protection, the bonding of the cushion ring should be checked to determine that it is adequate for the Motors with resilient cushion rings usually must be provided with a bonding conductor across the resilient rating of the branch circuit over current protective device being used.

There are applications where grounding the exterior parts of a motor or generator may result in greater hazard by increasing the possibility of a person in the area simultaneously contacting ground and some other nearby live electrical parts of other ungrounded electrical equipment. In portable equipment it is difficult to be sure that a positive ground connection is maintained as the equipment is moved, and providing a grounding conductor may lead to a false sense of security.

Select a motor starter and over current protection suitable for this motor and its application. Consult motor starter application data as well as the National Electric Code and/or other applicable local codes.

For motors installed in compliance with IEC requirements, the following minimum cross sectional area of the protective conductors should be used:

0,5 S	S>35
16	16 < S ≤ 35
S	S< 16
mm ²	mm ²
protective conductor, $S_{\mathbf{p}}$	conductors, S
Minimum cross-sectional area of the corresponding	Cross-sectional area of phase

Equipotential bonding at least 4 mm². connection shall made using a conductor with a cross-sectional area <u>Q</u>

Conduit Box For ease of making connections, an oversize conduit box is provided. Most conduit boxes can be rotated 360° in 90° increments. Auxiliary conduit boxes are provided on some motors for accessories such as space heaters, RTD's etc.

AC Power

Motors with flying lead construction must be properly terminated and insulated. Connect the motor leads as shown on the connection diagram located on the name plate or inside the cover on the conduit box. Be sure the following guidelines are met:

- AC power is within $\pm 10\%$ of rated voltage with rated frequency. (See motor name plate for ratings). **OR**
- AC power is within $\pm 5\%$ of rated frequency with rated voltage. OR
- A combined variation in voltage and frequency of ±10% (sum of absolute values) of rated values, provided the frequency variation does not exceed ±5% of rated frequency.
 Performance within these voltage and frequency variations are shown in Figure 2-4.

Figure 2-3 Accessory Connections

HEATERS.

Rotation All three phase motors are reversible. To reverse the direction of rotation, disconnect and lock out po and interchange any two of the three line leads for three phase motors. For single phase motors, che the connection diagram to determine if the motor is reversible and follow the connection instructions	BEARING RID * One bearing RTD is installed in Dr are labeled RTDDE. * One bearing RTD is installed in Or are labeled RTDODE. * Note RTD may have 2-Red/1-Wh	WINDING RIDS Winding RTDs are installed in winding RED RED WHITE RED RED WHITE	Three thermistors are installed in wir Leads are labeled TD1 & TD2.	HEATERS One heater is installed in each end of m H1 —\frac{1}{1} \text{M} H2 Leads for each heater are labeled H1 & (Like numbers should be tied together).
All three phase motors are reversible. To reverse the direction of rotation, disconnect and lock out pound interchange any two of the three line leads for three phase motors. For single phase motors, characteristic connection diagram to determine if the motor is reversible and follow the connection instructions	* One bearing RTD is installed in Drive endplate (PUEP), leads are labeled RTDDE. * One bearing RTD is installed in Opposite Drive endplate (FREP), lea are labeled RTDODE. * Note RTD may have 2-Red/1-White leads; or 2-White/1-Red Lead.	Winding RTDs are installed in windings (2) per phase. Each set of leads is labeled 1TD1, 1TD2, 1TD3, 2TD1, 2TD2, 2TD3 etc.	Three thermistors are installed in windings and tied in series. Leads are labeled TD1 & TD2.	One heater is installed in each end of motor. Leads for each heater are labeled H1 & H2. (Like numbers should be tied together).

priase—to—pnase, and ground insulation of stator windings are subject to the resulting dielectric stresses Suitable precautions should be taken in the design of these drive systems to minimize the magnitude of these voltage spikes. Consult the drive instructions for maximum acceptable motor lead lengths, and proper granting. S

DELTA-WYE CONNECT

-HIGH TO LOW VOLTAGE RATIO 1.73:1

(∃ ≦

(E.E.)

HIGH VOLTS

W2(T6)

V2(T5)

AC Motor Connection Diagram

U1(T1)

Installation & Operation 2-5

Note: Main power leads for CE Marked Motors may be marked U,V,W - for standard configurations, please consult connection diagrams.

Connection Diagrams AC Motor Connection Diagram

AC Motor Connection Diagram

3 PHASE MOTORS, LEAD MARKINGS CAN BE DIRECTLY TRANSLATED MAA DESIGNATIONS. FOR THESE MOTORS, THE LEAD MARKINGS ARE COME.

EXAMPLE COMPARISIONS OF IEC AND NEMA LEADING MARKINGS FOR COMMON CONNECTION TYPES ARE SHOWN BELOW.
NGLE PHASE MOTORS

SINGLE VOLTAGE NON REVERSIBLE MAIN WINDING SINGLE VOLTAGE REVERSIBLE Z1 (T8) Z2(T5)

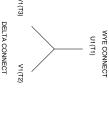
THREE LEADS

U1=T1 V1=T2 W1=T3

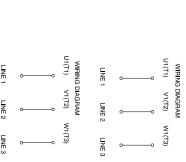
U1(T1)

AUXILIARY WINDING

Z1 (T8)

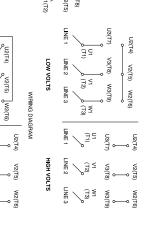

DUAL VOLTAGE REVERSIBLE

U1(T1)


MAIN WINDING U3(T3)

U2(T2)

W1(T3) DELTA CONNECT V1(T2)



DELTA CONNECT DUAL VOLTAGE-HIGH TO LOW VOLTAGE RATIO 2:1 NINE LEADS WYE CONNECT U1(T1) 1U2(T4) V2(T5) W2(T6) (T2)

AC Motor Connection Diagram

(72) ≤

(T3)

V3(T8)

V2(T5)

LOW VOLTS

Page 24 of 41

2-6 Installation & Operation

Installation & Operation 2-7

40,07 Momentarily apply power and check the direction of rotation of the motor shaft.

If motor has been in storage or idle for some time, check winding insulation integrity.

First Time Start Up Be sure that all power to motor and accessories is off. Be sure the motor shaft is disconnected from

the load and will not cause mechanical rotation of the motor shaft.

Make sure that the mechanical installation is secure. All bolts and nuts are tightened etc

Inspect all electrical connections for proper termination, clearance, mechanical strength and electrical

Be sure all shipping materials and braces (if used) are removed from motor shaft Manually rotate the motor shaft to ensure that it rotates freely.

Replace all panels and covers that were removed during installation.

If motor rotation is wrong, be sure power is off and change the motor lead connections. Verify rotation direction before you continue.

Start the motor and ensure operation is smooth without excessive vibration or noise. If so, run the motor for 1 hour with no load connected.

9

≓ 10.

After 1 hour of operation, disconnect power and connect the load to the motor shaft. Verify all coupling guards and protective devices are installed. Ensure motor is properly ventilated. If motor is totally enclosed fan-cooled or non-ventilated it is recommended that condensation drain plugs, if present, be removed. These are located in the lower portion of the end-shields. Totally enclosed fan-cooled "XT" motors are normally equipped with automatic drains which may be totally enclosed fan-cooled "XT" motors are normally equipped with automatic drains which may be

+15

-8 Installation & Operation

- Check that the coupling is properly aligned and not binding.
- The first coupled start up should be with no load. Apply power and verify that the load is a transmitting excessive vibration back to the motor though the coupling or the foundation. should be at an acceptable level. d is not ion. Vibration
- Run for approximately 1 hour with the driven equipment in an unloaded condition

The equipment can now be loaded and operated within specified limits. Do not exceed the name plate ratings for amperes for steady continuous loads.

Jogging and Repeated Starts Repeated starts and/or jogs of induction motors generally reduce the life of the motor same motor under full load. If it is necessary to repeatedly start or jog the motor, it is advisable to the application with your local Baldor distributor or Baldor Service Center. winding insulation. A much greater amount of heat is produced by each acceleration or jog than by full load. If it is necessary to repeatedly start or jog the motor, it is advisable to ccheck the

distributor or Baldor Service Center. **Heating** - Duty rating and maximum ambient temperature are stated on the motor name plate. Do not exceed these values. If there is any question regarding safe operation, contact your local Baldon

Hazardous Locations

Hazardous locations are those where there is a risk of ignition or explosion due to the presence of combustible gases, vapors, dust, fibers or flyings.

Facilities requiring special equipment for hazardous locations are typically classified in accordance with local requirements. In the US market, guidance is provided by the National Electric Code. In international hazardous location areas, guidance for gas / vapor / mist classification is given in area classification and select proper equipment. equipment is suitable for installation in that environment, and identifies what the maximum safe temperature or temperature class is required. It is the customer or users responsibility to determine the international hazardous location areas, guid IEC60079–14, or for dust in IEC61241–14. This classification process lets the installer know what

Areas are classified with respect to risk and exposure to the hazard. In the US market, areas are typically classified as follows Class, Division, Group and Temperature Class. In some newer installations in the US and in most international markets, areas are classified in Zones.

Protection Concepts

Class I Division 1 / Zone 1 [Equipment Group I (mining) or II (surface), Equipment Protection Level (EPL) Gb, Mb]

Motors that are explosion proof or flameproof use specially machined flameproof joints between the end bell or bracket and the frame, as well as along the rotating shaft and at connection box covers and entries. The fit of these flameproof joints are designed to contain the combustion or quench the flame of an explosive gas atmosphere prior to it exiting the motor. These flameproof joints have lengths and widths selected and tested based on the gas group present in the atmosphere. Baldor Reliance motors are typically designed to meet Class I (Division 1) Group C and D (explosion proof) or Ex d IIB Baldor offers a range of motors suitable for installation in a Division 1 or Zone 1 environment. T motors are known as explosion proof or flameproof. (Insert flameproof motor cut away drawing)

An application note regarding equipment applied in accordance with the US National Electric Code (NFPA 70–2008) – according to Article 500.8(C) Marking, sub clause (2) in the fine print note, it is noted that Equipment not marked to indicate a division is suitable for both Division 1 and Division 2 locations. These motors are not gas tight. To the contrary, this protection concept assumes that due to the normal heating and cooling cycle of motor operation that any gas present will be drawn into the motor. Since flameproof or explosion proof motors are designed to contain the combustion and extinguish any flame transmission, for this protection concept, only external surface temperatures are of concern. Thermal limiting devices such as thermostats, thermistors or RTDs may be provided on these motors to limit the external surface

Class I Division 2 / Zone 2 Ex nA, [Equipment Protection Level (EPL) Gc]
This protection concept relies on having no sources of ignition present such as arcing parts or hot surfaces. For this protection concept, internal temperatures as well as external temperatures are

considered. In many cases, the internal temperatures are higher than the external temperatures and therefore become the limiting factor in determination of temperature code designation. In these applications, it is very important to use a motor that has been evaluated thermally for use with an inverter or converter, if variable speed operation is desired. Thermostats used for Class I Division 2 and Ex nA motors are used to protect the motor only. For motors using flying lead construction, it is important to use connection lugs and insulate with heat shrink tubing or a double wrap of insulation grade electrical tape to avoid the risk of spark or ignition.

Class II Division 1 / Zone 21 [Equipment Group III, Equipment Protection Level (EPL) Db]

This area classification is one where the risk of ignitable concentrations of dust is present at all or some of the time. The protection concepts used for Class II Division 1 is similar to flamepath, except with additional dust exclusion paths designed for the rotating shaft. In the international designations, this concept is referred to as dust ignition proof or Ex tD. External surface temperature remains the limiting factor. Thermal limiting devices such as thermostats, thermistors or RTDs may be provided on these motors to limit the external surface temperature during overload conditions. If thermostats are provided as a condition of certification, it is the installer's responsibility to make sure that these devices are provided to as suitable switching devices. properly connected to a suitable switching device. Note: In the North American area classification sy In the North American area classification system, Class III exists for fibers and flyings. In the IEC designation, both dusts and flyings are absorbed into Group III.

Class II Division 2 / Zone 22 [Equipment Group III, Equipment Protection Level (EPL) Dc]
This area classification is one where the risk of exposure to ignitable concentrations of dust are not likely to occur under normal operating conditions and relies heavily on the housekeeping practices within the

installation.

Sine Wave Power Operation for Division 1 or 2 and Zone 1 or 2 and Zone 21 or 22 Hazardous Location.

These motors are designed to operate at or below the maximum surface temperature (or T-Code) stated on the nameplate. Failure to operate the motor properly can cause this maximum surface temperature to be exceeded. If applied in a Division 1 or 2 / Zone 1 or 2 and Zone 21 or 22 environment, this excessive temperature may cause ignition of hazardous materials. Operating the motor at any of the following conditions can cause the marked surface temperature to be exceeded.

- Motor load exceeding service factor nameplate value
- Voltages above or below nameplate value Ambient temperatures above nameplate value

Unbalanced voltages

oss of proper ventilation

- Altitude above 3300 feet / 1000 meters Severe duty cycles of repeated starts
- Motor reversing
- Variable frequency operation Single phase operation of polyphase equipment

specific hazardous areas may be used in those hazardous areas on inverter power. designed to operate at or below the maximum surface temperature (or T-Code) sta Variable Frequency Power Operation for Division 1 or 2 and Zone 1 or 2 and Zone 21 or 22 Hazardous Location (motors with maximum surface temperature listed on the nameplate).

Only motors with nameplates marked for use on inverter (variable frequency) power, and labeled for the control of t operate the motor properly can cause this maximum surface temperature to be exceeded T–Code) stated on the nameplate. The motor is

Installation & Operation 2-9

2-10 Installation & Operation

cause the marked surface temperature to be exceeded If applied in a Division 1 or 2 / Zone 1 or 2 may cause ignition of hazardous materials Motor load exceeding service factor nameplate value or 2 and Zone 21 or : erials. Operating the 22 environment, this excessive temperature motor at any of the following conditions can

- Ambient temperature above nameplate value
- Voltage (at each operating frequency) above or below rated nameplate value

- Operation outside of the nameplate speed / frequency range
- Altitudes above 3300 feet / 1000 meters
- Single phase operation of polyphase equipment
- Unstable current wave forms
- 10. Lower than name plate minimum carrier frequency

Thermal Limiting

Thermal Limiting devices are temperature sensing control components installed inside the motor to limit the internal temperature of the motor frame by interrupting the circuit of the holding coil of the magnetic switch or contactor. They are required for most Division 1 and Zone 1 applications. For Division 2 or Zone 2 applications, motors should be selected that preclude running temperatures from exceeding the ignition temperatures for the designated hazardous material. In Division 2 or Zone 2 classified locations, thermal limiting devices should only be used for winding protection and not considered for limiting all internal motor temperatures to specific ignition temperatures.

Bearing currents can exist in some motors for both line-fed and inverter-fed applications. Larger line-fed motors may require at least one insulated bearing to prevent a flow of current through the bearings. Do not defeat such insulation whether the motor is line-fed or inverter-fed applications. Inverter-fed motors may require additional bearing insulation or even a shaft brush. Do not defeat such features. When the motor and the coupled load are not on a common conductive baseplate, it may also be necessary to electrically bond together the stationary parts of the motor and the coupled equipment. **Equipotential Bonding and Shaft Current Reduction**Larger motors (ie WP construction) may require proper bonding between motor enclosures and covers to avoid the risk of stray currents during start up. Fastening methods and bonding straps must not be modified.

Repair of Motors used in Hazardous Locations

Repair of hazardous certified motors requires additional information, skill, and care. It is the customer's responsibility to select service shops with proper qualifications to repair hazardous location motors. Contact the manufacture for additional repair details. Use only original manufacturer's parts. Repair of Explosion Proof or Flame Proof Motors Class | Division 1 and Zone 1

In the North American market, recertification programs are offered by Underwriters Laboratories and Canadian Standards Association which allow authorized service shops to mark the rebuilt motors as certified. In the international markets using IEC based requirements, repair should be undertaken only after consulting IEC60079-19 Explosive Atmospheres-Part 19 Equipment repair, overhaul and reclamation. If use of a certified repair facility is desired, consult the IECEX Repair Scheme at

http://www.iecex.com/service_facilities.htm

Explosion proof and flameproof motors achieve their safety based on the mechanical construction – flameproof joints and bearing clearance, and the electrical design including any thermal limiting devices. If it is necessary to repair a flameproof or explosion proof motor, it is critical that the mechanical flameproof joints be maintained. Consult Baldor Electric Company for flameproof joint construction details. Use only Baldor-Reliance supplied parts. Baldor does not recommend reclamation of parts. Since this protection

method also relies on temperature being maintained, make sure that any rewinding uses the original electrical designs, including any thermal protection that may be present.

Repair of Dust Ignition Proof Motors – Class II Division 1 and 2, Zone 21 and 22.

For Dust Ignition Proof, proper sealing is required. Do not modify the motor construction to add any additional opening, and ensure that proper sealing is maintained in the connection box and at the sha seal. Since this protection method also relies on temperature being maintained, make sure that any rewinding uses the original electrical designs, including any thermal protection that may be present

Repair of Class I Division 2 and Zone 2 motors For Division 2 and Zone 2, the internal and external temperatures are of concern. Since this protection method also relies on temperature being maintained, make sure that any rewinding uses the original lat may be present. Use only Baldor replacement

Maintenance & Troubleshooting 3-1

Maintenance Section 3 & Troubleshooting

WARNING:

General Inspection Inspect the motor at regular intervals, approximately every 500 hours of operation or every 3 months, whichever occurs first. Keep the motor clean and the ventilation openings clear. The following steps should be performed at each inspection: UL and EX Listed motors must only be serviced by UL or EX Approved Authorized Baldor Service Centers if these motors are to be returned to a hazardous and/or explosive atmosphere.

WARNING: Electrical shock can cause serious or fatal injury. Only quinstallation, operation and maintenance of this equipment. Do not touch electrical connections before you first ensure that power has been disconnected. Electrical shock can cause serious or fatal injury. Only qualified personnel should attempt the

- Check that the motor is clean. Check that the interior and exterior of the motor is free of dirt, oil, grease, water, etc. Oily vapor, paper pulp, textile lint, etc. can accumulate and block motor yentilation. If the motor is not properly ventilated, overheating can occur and cause early motor
- ы Perform a dielectric with stand test periodically to ensure that the integrity of the winding insulation has been maintained. Record the readings. Immediately investigate any significant decrease in insulation recipies. failure. insulation resistance.
- Check all electrical connectors to be sure that they are tight.

ώ

Relubrication & Bearings if the following recommendations are used in your maintenance program. **Learings** Bearing grease will lose its lubricating ability over time, not suddenly. The lubricating ability of a grease (over time) depends primarily on the type of grease, the size of the bearing, the speed at which the bearing operates and the severity of the operating conditions. Good results can be obtained

Type of Grease A high grade ball or roller bearing grease should be used. Recommended grease for standard checked and verified service conditions is Polyrex EM (Exxon Mobil). Do not mix greases unless compatibility has been

Ball Bearing Motors

CHEVRON OIL CHEVRON OIL TEXACO, INC. TEXACO, INC. PENNZOIL DARMEX DARMEX SHELL OIL Operating Temperature –25°C (-15°F) to 50°C (120°F)
EXXON
POLYREX EM (Standard on Baldor motors) ΤRO CANADA UNITIEX N2
BEACON 325
SRI NO. 2 (Compatible with Polyrex EM)
BLACK PEARL
PREMIUM RB
POLYSTAR PENNZLUBE EM-2 DARMEX 707 DARMEX 711 PEERLESS LLG DOLIUM BRB RYKON#

Minimum Starting Temperature -60°C (-76°F)
SHELL OIL CO. AEROSHELL 7 (
MOBIL 28 MOBIL 28 MOBILITH SHC 100 (Low Temperature – Arctic Duty) (Standard on Baldor motors)

Roller Bearing Motors

MOBIL CHEVRON OIL Operating Temperature TEXACO, INC. e -25°C (-15°F) to 50°C (120°F)
PREMIUM RB
MOBILITH SHC 220 (Stand BLACK PEARL (Standard on Baldor motors)

3-2 Maintenance & Troubleshooting

Relubrication Intervals n Intervals Recommended relubrication intervals are shown in Table 3-2. It is important to realize that the recommended intervals of Table 3-2 are based on average use.

Refer to additional information contained in Tables 3-3, 3-4 and 3-5 Table 3-2 Relubrication Intervals *

			Rated Speed - RPM	ed - RPM		
NEMA / (IEC) Frame Size	10000	6000	3600	1800	1200	900
Up to 210 incl. (132)	*	2700 Hrs.	5500 Hrs.	5500 Hrs. 12000 Hrs. 18000 Hrs. 22000 Hrs.	18000 Hrs.	22000 Hrs.
Over 210 to 280 incl. (180)		*	3600 Hrs.	3600 Hrs. 9500 Hrs. 15000 Hrs. 18000 Hrs.	15000 Hrs.	18000 Hrs.
Over 280 to 360 incl. (225)		*	* 2200 Hrs.	* 2200 Hrs. 7400 Hrs. 12000 Hrs. 15000 Hrs.	12000 Hrs.	15000 Hrs.
Over 360 to 449 incl. (315)		**	*2200 Hrs.	*2200 Hrs. 3500 Hrs. 7400 Hrs. 10500 Hrs.	7400 Hrs.	10500 Hrs.

- Relubrication intervals are for ball bearings.

 For vertically mounted motors and roller bearing.
- For vertically mounted motors and roller bearings, divide the relubrication interval by 2.

For motors operating at speeds greater than 3600 RPM, contact Baldor for relubrication recommendations Table 3-3 Service Conditions

			-
	<-29° C **		Low Temperature
Shock or Vibration	Class H Insulation		
Severe dirt, Abrasive dust, Corrosion, Heavy	>50° C* or	16 Plus	Extreme
Moderate dirt, Corrosion	50° C	16 Plus	Severe
Clean, Little Corrosion	40° C	œ	Standard
Contamination	Maximum	of Operation	
7	אוויסוכוור וכוווסכו מומוכ	ייטקיט קייו מעץ	Control of octains

- not mix with other grease types. Thoroughly clean bearing & cavity before adding grease. Special high temperature grease is recommended (Dow Corning DC44). Note that Dow Corning DC44 grease does
- Special low temperature grease is recommended (Aeroshell 7).

Table 3-4 Relubrication Interval Multiplier

Saverity of Service Multiplier	

Some motor designs use different bearings on each motor end. This is normally indicated on the motor nameplate In this case, the larger bearing is installed on the motor Drive endplate. For best relubrication results, only use the appropriate amount of grease for each bearing size (not the same for both).

Maintenance & Troubleshooting 3-3

Table 3-5 Bearings Sizes and Types

2	(These are t	Bearing Description (These are the "Large" bearings (Shaft End) in each frame size)	ption aft End) in eac	ch frame size)
NEMA (IEC)	Bearing	Weight of Grease to add *	Volume o	Volume of grease to be added
		oz (Grams)	in ³	teaspoon
56 to 140 (90)	6203	0.08 (2.4)	0.15	0.5
140 (90)	6205	0.15 (3.9)	0.2	0.8
180 (100–112)	6206	0.19 (5.0)	0.3	1.0
210 (132)	6307	0.30 (8.4)	0.6	2.0
250 (160)	6309	0.47 (12.5)	0.7	2.5
280 (180)	6311	0.61 (17)	1.2	3.9
320 (200)	6312	0.76 (20.1)	1.2	4.0
360 (225)	6313	0.81 (23)	1.5	5.2
400 (250)	6316	1.25 (33)	2.0	6.6
440 (280)	6319	2.12 (60)	4.1	13.4
5000 to 5800 (315-450)	6328	4.70 (130)	9.2	30.0
5000 to 5800 (315-450)	NU328	4.70 (130)	9.2	30.0
360 to 449 (225–280)	NU319	2.12 (60)	4.1	13.4
AC Induction Servo				
76 Frame 180 (112)	6207	0.22 (6.1)	0.44	1.4
77 Frame 210 (132)	6210	0.32 (9.0)	0.64	2.1
80 Frame 250(160)	6213	0.49 (14.0)	0.99	3.3
* Weight in grams = .005 DB of grease to be added	ase to be added			
	-			

Note: Not all bearing sizes are listed.

For intermediate bearing sizes, use the grease volume for the next larger size bearing.

Page 32 of 41

3-4 Maintenance & Troubleshooting

Caution: additional information. To avoid damage to motor bearings, grease must be kept free of dirt. For an extremely dirty environment, contact your Baldor distributor or an authorized Baldor Service Center for

Relubrication Procedure Be sure that the grease you are adding to the motor is compatible with the grease already in the motor. Consult your Baldor distributor or an authorized service center if a grease other than the recommended type is to be used.

Caution: Do not over-lubricate motor as this may cause premature bearing failure

With Grease Outlet Plug

- With the motor stopped, clean all grease fittings with a clean cloth
- Remove grease outlet plug.

Caution: Over-lubricating can cause excessive bearing temperatures, premature lubrication breakdown and bearing failure.

- Add the recommended amount of grease
- Operate the motor for 15 minutes with grease plug removed. This allows excess grease to purge.

Note: Only a Baldor authorized and UL or CSA certified service center can disassemble a UL/CSA listed explosion proof motor to maintain it's UL/CSA listing. Without Grease Provisions Re-install grease outlet plug.

- Disassemble the motor.
- Add recommended amount of grease to bearing and bearing cavity. (Bearing should be about 1/3 full of grease and outboard bearing cavity should be about 1/2 full of grease.)
- Assemble the motor.

Sample Relubrication Determination

Assume - NEMA 286T (IEC 180), 1750 RPM motor driving an exhaust fan in an ambient temperature of 43° C and the atmosphere is moderately corrosive. Table 3-2 list 9500 hours for standard conditions.

- Table 3-3 classifies severity of service as "Severe".

 Table 3-5 shows that 1.2 in³ or 3.9 teaspoon of grease is to be added

Note: Smaller bearings in size category may require reduced amounts of grease.

	Table 3-6 Troubleshooting Chart	ooting Chart
Symptom	Possible Causes	Possible Solutions
Motor will not start	Usually caused by line trouble, such as, single phasing at the starter.	Check source of power. Check overloads, fuses, controls, etc.
Excessive humming	High Voltage.	Check input line connections.
	Eccentric air gap.	Have motor serviced at local Baldor service center.
Motor Over Heating	Overload. Compare actual amps (measured) with nameplate rating.	Locate and remove source of excessive friction in motor or load. Reduce load or replace with motor of greater capacity.
	Single Phasing.	Check current at all phases (should be approximately equal) to isolate and correct the problem.
	Improper ventilation.	Check external cooling fan to be sure air is moving properly across cooling fins.
	Unbalanced voltage.	Check voltage at all phases (should be approximately equal) to isolate and correct the problem.
	Rotor rubbing on stator.	Check air gap clearance and bearings. Tighten "Thru Bolts".
	Over voltage or under voltage. Open stator winding.	Check input voltage at each phase to motor. Check stator resistance at all three phases for
		balance.
	Improper connections.	Inspect all electrical connections for proper termination, clearance, mechanical strength and electrical continuity. Refer to motor lead connection diagram.
Bearing Over Heating	Misalignment.	Check and align motor and driven equipment. Reduce helt tension to proper point for had
	Excessive end thrust.	Reduce the end thrust from driven machine.
	Excessive grease in bearing.	Remove grease until cavity is approximately 3/4 filled.
	Insufficient grease in bearing.	Add grease until cavity is approximately 3/4 filled.
	Dirt in bearing.	Clean bearing cavity and bearing. Repack with correct grease until cavity is approximately $^{3}4$ filled.
Vibration	Misalignment.	Check and align motor and driven equipment.
	Rubbing between rotating parts and stationary parts.	Isolate and eliminate cause of rubbing.
	Rotor out of balance.	Have rotor balance checked are repaired at your Baldor Service Center.
	Resonance.	Tune system or contact your Baldor Service Center for assistance.
Noise	Foreign material in air gap or ventilation openings.	Remove rotor and foreign material. Reinstall rotor. Check insulation integrity. Clean ventilation openings.
Growling or whining	Bad bearing.	Replace bearing. Clean all grease from cavity and new bearing. Repack with correct grease until cavity is approximately 3/, filled.

3-6 Maintenance & Troubleshooting

MN408

Suggested bearing and winding RTD setting guidelines for Non-Hazardous Locations ONLY

Most large frame AC Baldor motors with a 1.15 service factor are designed to operate below a Class B (80°C) temperature rise at rated load and are built with a Class H winding insulation system. Based on this low temperature rise, RTD (Resistance Temperature Detectors) settings for Class B rise should be used as a starting point. Some motors with 1.0 service factor have Class F temperature rise.

The following tables show the suggested alarm and trip settings for RTDs. Proper bearing and winding RTD alarm and trip settings should be selected based on these tables unless otherwise specified for specific applications.

If the driven load is found to operate well below the initial temperature settings under normal conditions, the alarm and trip settings may be reduced so that an abnormal machine load will be identified.

specified by NEMA. Bearing RTDs should be installed so they are in contact with the outer race on ball or roller bearings or in direct contact with the sleeve bearing shell. The temperature limits are based on the installation of the winding RTDs imbedded in the winding as

Winding RTDs - Temperature Limit In °C (40°C Maximum Ambient)

Motor Load	Class B Temp (Typical	lp Rise ≤ 80°C Design)	Class F Temp Rise ≤ 105°C	Rise ≤ 105°C	Class H Temp Rise ≤ 125°C	Rise ≤ 125°C
	Alarm	Trip	Alarm	Trip	Alarm	Trip
≤ Rated Load	130	140	155	165	175	185
Rated Load to 1.15 S.F.	140	150	160	165	180	185

Note: • Winding RTDs are factory production installed, not from Mod-Express.
• When Class H temperatures are used, consider bearing temperatures and relubrication requirements

Bearing RTDs – Temperature Limit In °C (40°C Maximum Ambient)

Bearing Type	Anti-F	riction	Sleev	eve
Oil or Grease	Alarm	Trip	Alarm	Trip
Standard*	95	100	85	56
High Temperature**	110	115	105	110

Bearing temperature limits are for standard design motors operating at Class B temperature rise. High temperature lubricants include some special synthetic oils and greases.

For Baldor Sales and Support, Please Contact: Walker EMD • http://www.walkeremd.com • Toll-Free: (800) 876-4444 • Phone: (203) 426-7700 • Fax: (203) 426-7800

include the following: Greases that may be substituted that are compatible with Polyrex EM (but considered as "standard" lubricants)

Darmex 711

Darmex 707

Pennzoil Pennzlube EM-2 Rykon Premium #2 Chevron Black Pearl

- Petro-Canada Peerless LLG

See the motor nameplate for replacement grease or oil recommendation. Contact Baldor application engineering for special lubricants or further clarifications

Baldor District Offices Baldor District Offices Baldor District Offices

© 2009 Baldor Electric Company MN408

BALDOR ELECTRIC COMPANY
World Headquarters
30x 2400 Fort Smith, AR 72901–2400
79) 646–4711 Fax (479) 648–5792

All rights reserved. Printed in USA 3/09

AC Qο DC **Motor Installation** စ္တ Maintenance

Safety Notice Be sure to read and understand all of the Safety Notice statements in MN408. A copy is available http://www.baldor.com/support/literature_load.asp?ManNumber=MN408 a

Thoroughly inspect this equipment before accepting shipment from the transportation company. If any damage shortage is discovered do not accept until noted on the freight bill. Report all damage to the freight carrier. 9

Eye bolts, lifting lugs or lifting openings, if provided, are intended only for lifting the motor and motor mounted standard accessories not exceeding, in total 30% of the motor weight. These lifting provisions should never be used when lifting or handling the motor and driven equipment. Eye bolt lifting capacity rating is based on a lifting alignment coincident with eye bolt center line. Eye bolt capacity reduces as deviation from this alignment is increased. Be sure eye bolts are tight and prevented from turning before lifting.

INSTALLATION OUTSIDE THE USA:
Refer to MN408 and MN1383 for Compliance with European Directives. Copies are available at:

http://www.baldor.com/support/literature_load.asp

MOTOR ENCLOSURE Open drip proof motors are intended for use in clean

Explosion protected motors, as indicated by a Nationally Recognized Testing Laboratory Certification mark and marking with Class, Division and Temperature Code are intended for installation in hazardous locations as described in Article 500 of the NEC. Refer to MN408 for more details. combustible materials. Open motors can emit flame and/or molten metal in the event of insulation failure. dry locations with adequate supply of cooling air. These motors should not be used in the presence of flammable or indoor and outdoor locations. moisture, dirt and/or corrosive materials are present in TEFC, totally enclosed motors are intended for use where

MOUNTING

Foot mounted machines should be mounted to a rigid foundation to prevent excessive vibration. Shims may be used if location is uneven.

Flange mounted machines should be properly seated and aligned. Note: If improper rotation direction is detrimental to the load, check rotation direction prior to coupling the load to

premature bearing failure or shaft breakage.

Direct coupled machines should be carefully aligned and the shaft should rotate freely without binding. For **V-belt drive**, mount the sheave pulley close to the motor housing. Allow clearance for end to end movement of the motor shaft. Do not overtighten belts as this may cause

GENERAL

The user must select a motor starter and overcurrent protection suitable for this motor and its application. Consult motor starter application data as well as the National Electric Code and/or applicable local codes. Special motors for use by United States Government including special specifications, master plans, etc. refer to the applicable master plans and specifications involved the shaft block must be installed to prevent axial movement reshipped alone or installed to another piece of equipment remove blocking before operating the motor. If motor is to be On motors received from the factory with the shaft blocked, lectric

ESTING

Depending on storage conditions it may be necessary to regrease or change rusted bearings. Contact Baldor District Office if resistance is less than 5 meg ohms. If the motor has been in storage for an extensive period or has been subjected to adverse moisture conditions, check the motor insulation resistance with a meg ohm meter.

WARNING: Do not touch electrical connections before you first ensure that power has been disconnected. Electrical shock can cause serious or fatal injury.

WARNING: Be sure the system is properly grounded before applying power. Electrical shock can cause serious or fatal injury.

INSTALLATION

This motor must be installed Electric Code, NEMA MG-2, in accordance with National IEC standards and local codes

Connect the motor as shown in the connection diagrams. If this motor is installed as part of a motor control drive system, connect and protect the motor according to the control manufacturers diagrams. Refer to MN408 for additional details on lead marking. The wiring, fusing and grounding must comply with the National Electrical Code or IEC and local codes. When the motor is connected to the load for proper direction of rotation and started, it should start quickly and trun smoothly. If not, stop the motor immediately and operation and compare the measured current with the motor, motor connections are not correct or the load in heavy. Check the motor current after a few minutes of determine the cause. Possible causes are: low voltage at the nameplate rating.

the ground point, the motor or generator terminal housing, and the motor or generator frame. In non-USA locations consult the appropriate national or local code applicable. **GROUNDING**Ground the motor according to NEC and local codes. In the Ground the motor according to NEC and local codes. In the USA consult the National Electrical Code, Article 430 for information on grounding of motors and generators, and Article 250 for general information on grounding. In making the ground connection, the installer should make certain that ADJUSTMENT there is a solid and permanent metallic connection between

The neutral is adjustable on some DC motors. AC motors

For specific sound power or pressure level information, contact your local Baldor representative. Noise have no adjustable parts.

VIBRATION

This motor is balanced to NEMA MG1, Part 7 standard

BRUSHES (DC Motors)
Periodically, the brushes should be inspected and all brush dust blown out of the motor. If a brush is worn 1/2, (length specified in renewal parts data), replace the brushes. Reassemble and seat the new brushes using a brush arm is set on the neutra

Installation & Maintenance

Installation

& Maintenance

WARNING: Guards must be installed for rotating parts such as couplings, pulleys, external fans, and unused shaft extensions, should be permanently guarded to prevent accidental contact by personnel. Accidental contact with body parts or clothing can cause serious or fatal injury.

Before connecting the motor to an electrical supply, inspect for any damage resulting from shipment. Turn the shaft by hand to ensure free rotation. Motor leads must be isolated before the shaft will turn freely on permanent magnet motors. DRAIN PLUGS

MOUNTING located in the lowest portion of the ends shields. motor has special stainless steel drains). non-ventilated motors, the plugs in the lowest portion of the ends shields should be removed for operation (unless the each endplate for various motor mounting configurations. Condensation drain plugs are provided at four points on For Washdown and totally enclosed, fan cooled or All drains are

Mount the motor on a foundation sufficiently rigid to prevent excessive vibration. Grease lubricated ball bearing motors may be mounted with the feet at any angle. After careful alignment, bolt motor securely in place. Use shim to fill any unevenness in the foundation. Motor feet should sit solidly ₻ **च** on the foundation before mounting bolts are tightened. (Ingress Protection)

GUARDING

from water.

After motor installation is complete, a guard of suitable dimensions must be constructed and installed around the motor/gearmotor. This guard must prevent personnel from coming in contact with any moving parts of the motor or drive assembly but must allow sufficient cooling air to pass over

If a motor mounted brake is installed, provide proper safeguards for personnel in case of brake failure. plates or lids, must be installed before operating the motor. Brush inspection plates and electrical connection cover

STARTING

loose rotating parts to prevent them from flying off.
Check direction of rotation before coupling motor to load.
The motor should start quickly and run smoothly and with
little noise. If the motor should fail to start the load may be been miswired. In any case immediately shut motor off and too great for the motor, the voltage is low or the motor has Before starting motor remove all unused shaft keys and investigate the cause.

ROTATION

To reverse the direction of rotation, disconnect and lockout power and interchange any two of the three AC power leads for three phase motors. For two-phase four wire, disconnect and lockout power and interchange the AC line leads on any one phase. For two phase three wire, disconnect and lockout power and interchange phase one and phase two AC line

Maintenance Procedures

WARNING: WARNING: Do not touch electrical connections before you first ensure that power has been disconnected. Electrical shock can cause serious or fatal injury.
Surface temperatures of motor enclosures

accidentally coming into contact with hot surfaces. Protection should be provided by the user to protect against accidental contact with hot surfaces. Failure to observe this precaution could result in bodily injury. discomfort or injury to personnel may reach temperatures which can cause

Lubrication Information

lubricated at the factory. Motors that do not have regrease capability are factory lubricated for the normal life of the bearings. **Washdown motors can not be lubricated**. This is a ball or roller bearing motor. The bearings have beer

IP designations include two numerals, the first characteristic numeral is for ingress solid bodies and from dust.

The second for ingress protection from liquid – water.

Motors marked less than IP23 require additional protection

Polyrex EM unless stated on nameplate. Do not mix lubricants due to possible incompatibility. Look for signs of lubricant incompatibility, such as extreme soupiness visible from the grease relief area. If other greases are preferred, check with local Baldor representative for recommendations. Baldor motors are pregreased, normally with Mobil

capability) Relubrication Intervals (For motors with regrease

be relubricated. Lubrication is also recommended New motors that have been stored for a year or more should at these

LUBRICATION INSTRUCTIONS

motor to prevent grease contamination. contamination. Properly clean the grease inlet area of the Cleanliness is important in lubrication. Any grease used to lubricate anti friction bearings should be fresh and free from

Select service condition from Table 1. Select lubrication frequency from Table

LUBRICATION PROCEDURE

is warm. Bearings should be lubricated while stationary and the motor 1. Locate the grease inlet, clean the area, and replace the

- pipe plug with a grease fitting.

 Locate and remove the grease drain plug, if provided
- Add the recommended volume of recommended lubricant

 $\dot{\infty} \, \dot{\wp}$

- until clean grease appears at the grease drain, at the grease relief, or along the shaft opening.

 Replace the grease inlet plug and run the motor for two
- Replace the grease drain plug

Ò 4.

SPECIAL APPLICATIONSFor special temperature applications, consult your Baldor District Office.

		lable 1 Sei	lable 1 Service Conditions	
S	Severity of Service	Ambient Temperature Maximum	Atmospheric Contamination	Type of Bearing
	Standard	40° C	Clean, Little Corrosion	Deep Groove Ball Bearing
	Severe	50° C	Moderate dirt, Corrosion	Ball Thrust, Roller
	Extreme	$>\!50^\circ$ C* or Class H Insulation	Severe dirt, Abrasive dust, Corrosion	All Bearings
	Low Temperature	<-30° C **		
Sr	ecial high temperature g	rease is recommended ** Special	Special high temperature grease is recommended ** Special low temperature grease is recommended	

Table 2 Lubrication Frequency (Ball Bearings)

			Rated Speed - RPN	ed - RPM		
NEMA / (IEC) Frame Size	10000	6000	3600	1800	1200	900
Up to 210 incl. (132)	*	2700 Hrs.	5500 Hrs.	12000 Hrs. 18000 Hrs.	18000 Hrs.	22000 Hrs.
Over 210 to 280 incl. (180)		*	3600 Hrs.	9500 Hrs.	15000 Hrs.	18000 Hrs.
Over 280 to 360 incl. (225)		*	* 2200 Hrs.	7400 Hrs.	12000 Hrs.	15000 Hrs.
Over 360 to 5000 incl. (300)		*	*2200 Hrs.	3500 Hrs.	7400 Hrs.	10500 Hrs.
* Relubrication intervals are for ball bearings. For vertically mounted motors and roller bearings, divide the relubrication interval by 2. ** For motors operating at speeds greater than 3600 RPM, contact Baldor for relubrication recommendations.	arings. For vertic ter than 3600 RP	ally mounted mo M, contact Baldo	tors and roller be r for relubrication	arings, divide the recommendation	e relubrication ini ns.	erval by 2.

0.5

Low Temperature

Severity of Service

Table 3 Lubrication Interval Multiplier

Standard

		Bearing D	escription)	Bearing Description (Largest bearing in each frame size)	each frame siz	ze)
Frame Size NEMA (IEC)	OD Bearing D mm	OD OD	Width	Weight of grease to add	Volume of grease to add	าf grease าdd
		D 111111		ounce (gram)	inches ³	teaspoon
132)	6307	80	21	0.30 (8.4)	0.6	2.0
) incl. (180)	6311	120	29	0.61 (17.4)	1.2	3.9
) incl. (200)	6313	140	33	0.81 (23.1)	1.5	5.2
00 incl (300)	GCELIN	040	50	2 12 (60 0)	41	13.4

Up to 210 incl. (132)
Over 210 to 280 incl. (180)
Over 280 to 360 incl. (200)
Over 360 to 5000 incl. (300)

Table 4 Amount of Grease to Add

arino	do Č	Width	Weight of grease to add	Volume of grease to add	เe of grease to add
ď			ounce (gram)	inches ³	teaspoon
307	08	21	0.30 (8.4)	9.0	2.0
311	120	29	0.61 (17.4)	1.2	3.9
313	140	33	0.81 (23.1)	1.5	5.2
J322	240	50	2.12 (60.0)	4.1	13.4

Winding Winding **Dual Voltage Reversible** Single Phase Reversible U2(T2) U3(T3) U1(T1) **●** U2(T4) ♦ U2(T4) ◆ U1(T1) ◆ Z1(T8)

Auxiliary Winding

Z1(T8) **Auxiliary Winding** Z2(T5)

Z2(T5)

WYE Connection U(T1)

W(T3)

For single winding 3 phase motors, lead markings can be directly translated between IEC and NEMA designations. For these motors, the lead markings are:

U1=T1 U2=T4 U3=T7 U4=T10

V1=T2 V2=T5 V3=T8 V4=T11

W1=T3 W2=T6 W3=T9 W4=T12

Refer to the connection diagram provided on the Baldor motor. Some examples are as follows: Three Leads
DELTA Connection Wiring Diagram
U(T1)

V(T2) W(T3) Six Leads

WYE-DELTA Connection

W2(T6)

U1(T1) Line 1 Line 2

Line 3

W(T3) DELTA-WYE Connection U1(T1)

DC MotorsLead markings can be translated between IEC and NEMA designations as follows:

NEMA

U4(T4) ♦

U2(T4) V2(T5) V1(T2) W1(T3) **√** V2(T5)

● U2(T4)

W1(T3) W2(T6)**,●**

U1(T1) W2(T6) U2(T4) **V**1(T2) V1 (T2)

Wiring Diagram • W2(T6) • U2(T4) • V2(T5) Line 3 Line 1

Refer to the connection diagram provided on the Baldor motor.

Series Field Shunt Field Armature

A1, A2 S2, S2 F1, F2

A1, A2 D1, D2 E1, E2

Line 2 Line 3
High Volts/Start V2(T5) W1(T3)

Line 1 U1(T1) V1(T2) W1(T3) Low Volts/Run Line 2

World Headquarters
P.O. Box 2400 Fort Smith, AR 72902-2400 USA Ph. (1) 479.646.4711, Fax: (1) 479.648.5792

www.baldor.com

© 2009 Baldor Electric Company MN416

4 Installation & Maintenance

All rights reserved. Printed in USA