t Card Installation Instructions

Description

tGard provides a compact "Integrated Control \& Safety System". Its modularity allows the configuration of electrical gate switches, mechanical trapped keys, simple machine control systems or combinations of all three.

Important:

tGard elements can be configured to produce many different functional products, which can be integrated into safety and / or machine control systems. As such $\mathbf{t G a r d}$ products and the systems they are part of need to be installed and commissioned by suitably competent and qualified personnel whom have read and understood the whole of this document, prior to commencing the installation.
These installation instructions must be retained. A risk assessment must be carried out before installation. This product is not to be used as a mains isolator. When a unit is added to any electrical installation, it must meet the requirements of the applicable local standards, (e.g. IEC or EN). All the voltages used within the $\mathbf{t G a r d}$ circuits must be derived from a safety extra low voltage power supply (SELV). Any modification or deviation from these instructions invalidates all warranties. Fortress Interlocks Ltd. accept no liability whatsoever for any situation arising from misuse or misapplication of this product.

Tools / Fixings / Cables Required:

$2 \times$ M5 Cap head screw (refer to mounting diagrams for lengths).
$1 \times$ Hex driver to suit M5 screws (3mm across flats) $1 \times$ M5 T-Nut / tapped hole per fixing / M5 Nut Thread locking compound.
$2 \times$ M5 Nuts / tapped holes and screws per actuator, (Refer to mounting diagrams for screw lengths). $1 \times$ tap when fixing to a plate and not using nuts. $1 \times$ Electrical (approx $3 \mathrm{~mm} \times 0.5 \mathrm{~mm}$) flat screwdriver (required when using self wiring option). $\varnothing 5.5 \mathrm{~mm}$ Drill (when fixing to plate with nuts) or $\varnothing 4.2 \mathrm{~mm}$ Drill (when tapping plate)

Functional checking:
The following checks must be made during system commissioning:

1. Check all safety functions;

Access to a guarded area is only granted when the machine's motive power is removed safely. Any E-Stop brings the machine to an Emergency stop.
2. Check that every electrical I/O element activates or indicates the machine controls as desired. Including machine cannot run with door open.
If you have any questions or queries of any nature please contact the Fortress Distributor who will be pleased to advise and assist.
Service and inspection:
Regular (minimum) weekly inspection of the following is necessary to ensure trouble-free, lasting operation
-Correct switching function
-Loose cable connections
-Material degradation
-Debris and accelerated wear

- Sealing
- Tampering

Maintenance \& Repair:

If any problems are discovered during inspection, individual elements or complete configurations can be replaced by Fortress. Any modifications must undergo a full commissionin t. ta If lubrication of herable wars, whis elemens. I lubrich o required use WD40. Do will use dry lubricant. The frequency Any mean Any mechanical elena operalins. Wers that the lamp has been on for 100,000 hours that the lamp has been on for.

Environmental Specification \quad Table 1		
Ambient Temperature	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$	
Max. Relative Humidy	$93(+/-3) \%$ without any dew on the device	
Ingress Protection	IP65	
Vibration	$10-150 \mathrm{~Hz}$ Amplitude 0.35 mm 1 octave / per min, 20 cycles each axis	
Shock	$1 / 2$ sine wave acceleration 10 N duration 16 mS, 1000 cycles in each axis	

Protection Against Environmental Influences
A lasting and correct safety function requires that the unit be protected against the ingress of foreign bodies such as swarf, sand, blasting shot, etc. The unit is to be mounted away from the machine, or by the use of anti-vibration mountings, in order to avoid the effects of vibration, shock and bump.

Safety Data		
Standards	EN13849-1:2008 EN13849-2:2012 EN62061:2005 EN14119:2013	
Certifications	CE marked for all applicable directives	
Category	Cat. 3, PLe (ENIISO 13849-1) and SIL2 (EN/IEC 62061) Can be used as part of a PLe / Cat. 4 / SIL3 system	
Functional Safety Data	B10d (for whole tGard device, which will contain multiple elements)	
5,000,000		

Disposal:

tGard does not contain any certified hazardous materials so should be disposed of as general waste and recycled wherever possible.
Liability coverage is voided under the following conditions: -If these instructions are not followed.
-Misapplication or use outside of recommended specifications in this sheet.
Non-compliance with safety regulations.
Installation not carried out by competent personnel.
-Non-implementation of functional checks.

- Tampering.

Fortress Interlocks Ltd. reserves the right to modify the design at any time and without notice.

Override / Reset Key

DO NOT LEAVE OVERRIDE / RESET KEY IN PLACE! Always keep in a secure place, under management control, as it allows access to areas that may have a residual hazard, and may result in incorrect operation of some devices.

Mounting tGard

1. Choose optimal mounting position
tGard should be mounted in an environment within the specifications stated in Table 1.
The mounting location should also be away from, or protected against influences such as mechanical collision (door stop required), machine vibration, debris, direct sunlight and sources of electrical interference. Make sure that the gap around the perimeter of the guard, when closed (Safety Circuits Closed), does not exceed the limits specified in En13857 \& En953. When used as a door / gate lock, the maximum retention force is 2500 N .
2. If the configuration incorporates a locking head and door actuator go to step 3 otherwise skip to step 4
3. Remove $2 \times$ Head screws and rotate the head into the desired orientation. Replace head screws and tighten to 2.0 Nm .

3.1. The TAF actuator suits internal mounting on frame-less doors. It can be used in all mounting positions, but brackets may be required.

3.2. The TAH actuator is designed to be utilised for hinged door applications, without the need for additional brackets.

3.3. The TAS actuator is designed to be utilised for sliding door applications, without the need for additional brackets.

3.4. A TAS can be converted into a TAH on site (and vice ersa). Remove the two M3 screws that retain the actuator (a special pin hex tool will be required to do this which can be purchased separately from Fortress). Remove the actuator and back plate spring. Replace actuator, back plate spring and M3 screws in new location. Use locktite on M3 screws.

3.5. The TEH actuator is designed for hinged door applications, withou the need for additional brackets.

3.6. TEH Handing

This unit can have the handing changed on site by following is procedure below:

1. Remove the $3 \times$ M3 pozi-drive screws retaining the silver handle.
2. Remove the handle, the rose plate that retains the handle and its associated drive coupler.
3. Repeat steps $1 \& 2$ for the silver knob ensuring the drive couplers are not mixed up (they must stay with their handle)
4. Refit the silver handle to the opposite side taking care to ensure that when the handle is horizontal the actuator is out
5. Now refit the silver knob. Rotate the drive coupler 90° so that the silver knob can withdraw the actuator but cannot push the actuator back out. It is essential to use locktite on the $3 \times$ M3 pozi-drive screws holding on the silver knob.
6. Prepare panel / door frame for mounting: When plate mounting, the plate must be solid metal and a minimum thickness of 3 mm .

1. For front of panel mounting

For mounting to extruded aluminium frame position 1 off M5 T-nut (that are designed to suit the frame used).

-For plate mounting: drill $\varnothing 5.5 \mathrm{~mm}$ element \& actuator fixing holes, if fixing with nuts or drill $\varnothing 4.2 \mathrm{~mm}$ fixing holes if tapping the plate (plate must be $>6 \mathrm{~mm}$ thick if tapping), as per drilling diagram.

4.2. When an Internal release element is incorporated in the stack a 10 mm clearance hole must be drilled to accommodate the push release post at the back of the unit. To remove the ed push button, pull down the spring away from the red push button and fit a 5 mm spanner across the flats. You can now unscrew the red push button. Once the unit has been insterted hrough a 10 mm hole the red push button should be refitted with locktite. additional support is provided for the post to prevent it becoming with a tool trolley). This is not necessary when the post pass with a tool trolley). This is not necessary when the post passes throun gurang matering) 25 m or (40 mm Aluminium extrude fencing).
The unit should be installed so that it is not possible to reach the escape release button from outside the safeguarded area. 5. All screws must be securely fixed in place screws with thread locking compound (applied to female thread).
6. All fixings must be torque tightened to 2.5 Nm .

Trapped Key Systems

Where trapped keys are incorporated into the system, spare or master keys must be securely controlled.

Electrical connection tGard:

Make sure that the electrical supply is isolated prior to connecting to it.

Description:

tGard incorporates safety circuits and standard I/O in a single product. The safety circuits and control circuits (standard I/O) are separate through all of the element. There are a selection of different connection "base" elements that enable the connection of just the safety circuits, just control circuits or both the safety and the control circuits, in a variety of configurations.
Installation:
Check that the voltage of the machine's power supply (control circuits) is 24 V DC (SELV) (to UL6950 \& EN7671 \& EN50178) tGard will work at $+/-10 \%$ of the nominal supply voltage. The electrical system must incorporate circuit protection for the supply circuit, using a quick acting (F) device (rating 1.6A)

Electrical guidelines:

Control element with inputs / outputs (I/O), such as pushbuttons / lamps / selector switches must be physically configured nearest the base. Table 2 shows how many I/O connections can be made using the different types of connector, and
Table 3 shows each core element I/O requirements
Safety Circuit description and I/O allocation:
The safety circuits are made up of two, independent,
normally closed (N / C) circuits. They are both closed when the machine is in operation. There are a number of element that can open these safety circuits. All of these element use positively guided, force disconnect contacts. Refer to table 4 for base element pin assignments. The safety circuits must be connected to a Safety Relay or PLC in accordance with the installation instructions of the manufacturer, to provide the safety function. The voltage on the safety circuits should always be SELV. Both safety circuits must include over-current protection, via 200 mA fast blow fuses. Non-safety functions in core elements, such as push button and lamp elements operate with a common power supply.
A push button in the stack will have an output (from the stack) associated with it, whilst a Lamp in the stack will have an Input to the stack to drive it. The I/O pins on the connector are set to either inputs or Outputs, depending on the elements used on the stack. Please note that an external monitor has to perform a diagnostic function (compare both channels), in order to fulfill the safety requirements of CAT. 4/PLe and SIL 3.

Switch Ratings

Safety Switches
DC13: Le=0.5A, Ue=24V DC AC15: $\mathrm{Le}=1 \mathrm{~A}, \mathrm{Ue}=24 \mathrm{~V}$ AC

DC13: Le=0.5A, Ue=24V DC Monitoring Switches Max operating current $100 \mathrm{~mA} \& 24 \mathrm{~V}$
Push Buttons

Pin Assignment

A. Input / Output (Control)
/O are assigned starting at the physically lowest element (i.e. the element nearest the base) first. Working with the first output (e.g. button). Once all inputs \& outputs haved by the sigut (e.g. buton). (using the first available the prose continues for the next ulint in the configuration (working its way towards the head). For elements with multiple IVO Table way towards shows which is assiged first. overleaf) shows which is assigned first

B. Safety Circuits

The hierarchy for Safety Circuits is:

1. Head Safety Circuits (TSM element)
2. Solenoid Safety Circuits (when they are independent as in a FU or FL element).
3. E-Stop Safety Circuits (when they are independent as in a TET / TEP/TEM / TEI).
4. When "series" e-stops are used (TEC/TEW/TED/TEV) these are wired in series with the TSS circuits.

Table 2. (//O relative to tGard)					
Part No.	Type	QD C	nector	Safety	Max No. I/O
TQ1	QD	5 Pin	M12	Yes	0
TQ2	QD	8 Pin	M12	No	5
TQ3	QD	8 Pin	M12	Yes	1
TQ4	QD	12 Pin	M23	No	9
TQ5	QD	12 Pin	M23	Yes	5
TQ7	QD	14 Pin	7/8" UN2	Yes	7
TQ8	QD	19 Pin	M23	Yes	12
TQ9	QD	19 Pin	M23	Yes $\times 2$	8
TW1	Selfwire	12 Terminals		Yes	6
TW2	Selfwire	12 Terminals		No	10
TW3	Selfwire	24 Terminals		Yes $\times 2$	14
TC2	$2 m$ Trailing Cable	8	Core	No	5
TC3	2 m Trailing Cable	8	Core	Yes	1
TC4	2 m Trailing Cable	12	Core	No	9
TC5	$2 m$ Trailing Cable	12	Core	Yes	5
TC8	2 m Trailing Cable	19	Core	Yes	12
TC9	$2 m$ Trailing Cable	19	Core	Yes	8

Table 4. Pin Assignments for Quick Disconnect

Pins

Table 4a. Terminal Assignments for Self Wire Bases

Pins				
Part No.	TW1	Tw2	TW3	
Number of Pins	$12+$ Earth	$12+$ Earth	24 + Earth	
No.of Safety Circuits	2	0	4	
No. of Control I/O	6	10	14	
	+ 24 v	+ 24 v	+ 24 v	1
	Ov	Ov	0 v	2
	SC 1	1/O 0	SC 1	3
	SC 2	1/0 1	SC 2	4
	SC 1	$1 / 02$	SC 1	5
	SC 2	$1 / 03$	SC 2	6
	$1 / 00$	1/0 4	1/O 0	7
	I/O 1	1/0 5	//0 1	8
	$1 / 02$	1/0 6	$1 / \mathrm{O} 2$	9
	$1 / 03$	$1 / 07$	1/O 3	10
	1/0 4	$1 / 08$	1/0 4	11
	1/0 5	1/0 9	1/O 5	12
			1/0 6	13
			$1 / 07$	14
			$1 / 08$	15
			$1 / 09$	16
			I/O 10	17
			1/O 11	18
			1/0 12	19
			I/O 13	20
			SC 3	21
			SC 4	22
			SC 3	23
			SC 4	24
	Earth	Earth	Earth	

Selfwire 12 Way - Pin Assignment - TW1 \& TW2

Selfwire 24 Way - Pin Assignment - TW3

Table 5. Trailing Cable Core Pin Assignments

